Apprentissage profond

Une IA améliore le tri des douleurs thoraciques en se basant sur la radiographie

Pour distinguer une douleur thoracique bénigne d'une douleur thoracique dont la cause engage le pronostic vital, des chercheurs américains ont développé une IA permettant d'améliorer le tri des patients sur la base de leur radiographie thoracique d'admission aux urgences. Leurs résultats sont parus le 17 janvier 2023 dans Radiology.

icon réservé aux abonnésArticle réservé aux abonnés
Le 16/02/23 à 16:00, mise à jour le 11/09/23 à 13:23 Lecture 2 min.

Sur la radiographie thoracique d'admission aux urgences, l'algorithme d'apprentissage profond a appris à repérer des patrons qu'il associe à des maladies engageant le pronostic vital, comme le syndrome coronarien aigu (ici en rouge, en haut à gauche). © Kolossváry et al | Radiology, RSNA

Et si l'intelligence artificielle (IA) pouvait faciliter le tri des patients admis aux urgences pour douleur thoracique aiguë ? C'est ce que laissent entrevoir des résultats publiés le 17 janvier dans Radiology [1] par des radiologues du Massachusetts General Hospital (MGH) de Boston (États-Unis). Leur modèle d'apprentissage profond utilisant la radiographie thoracique d'admission aux urgences améliore significativement le résultat composite suivi par les chercheurs sur des cohortes rétrospectives de patients, à savoir le nombre de patients ayant subi une embolie pulmonaire, une dissection aortique, un syndrome coronarien aigu (SCA) ou un décès dans les 30 jours suivant l'admission.

Un entraînement sur une cohorte diverse

Les auteurs ont d'abord entraîné leur modèle d'apprentissage profond sur les radiographies thoraciques d’admission aux urgences de 17 254 patients adultes du MGH, qui ont été pris en charge une première fois aux urgences entre 2005 et 2015 pour cause de douleur thoraciq

Il vous reste 74% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Kolossváry M., Raghu V. K., Nagurney J. T. et coll., « Deep Learning Analysis of Chest Radiographs to Triage Patients with Acute Chest Pain Syndrome », Radiology, 17 janvier 2023. DOI : 10.1148/radiol.221926.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

15 Déc

13:20

Dans un article paru le 11 décembre dans le JAMA, une neurologue de l'université de Calgary au Canada appelle ses confrères oncologues à prendre en compte les AVC comme de fréquentes et potentiellement handicapantes complications des cancers et à travailler pour améliorer leur prise en charge.

7:30

Le prix Galien, qui récompense l'innovation en santé, a été remis notamment cette année à Michel Azizi, professeur de cardiologie à l'hôpital européen Georges-Pompidou, pour ses travaux sur la dénervation rénale pour le traitement de l'hypertension artérielle, et à la startup echOpen, qui développe un échographe portatif en partenariat avec l'AP-HP.

13:55

Les Hôpitaux civils de Colmar ont signalé un évènement de radioprotection après que deux praticiens en radiologie interventionnelle ont reçu des doses significatives de rayonnements aux mains, l’un dépassant légèrement la limite annuelle réglementaire. L’ASNR classe l’incident au niveau 1 de l’échelle INES et vérifie la mise en place des mesures correctives, rappelant l’importance du port systématique des dosimètres, indique l'institution.
Docteur Imago

GRATUIT
VOIR