Apprentissage profond

Une IA améliore le tri des douleurs thoraciques en se basant sur la radiographie

Pour distinguer une douleur thoracique bénigne d'une douleur thoracique dont la cause engage le pronostic vital, des chercheurs américains ont développé une IA permettant d'améliorer le tri des patients sur la base de leur radiographie thoracique d'admission aux urgences. Leurs résultats sont parus le 17 janvier 2023 dans Radiology.

icon réservé aux abonnésArticle réservé aux abonnés
Le 16/02/23 à 16:00, mise à jour le 11/09/23 à 13:23 Lecture 2 min.

Sur la radiographie thoracique d'admission aux urgences, l'algorithme d'apprentissage profond a appris à repérer des patrons qu'il associe à des maladies engageant le pronostic vital, comme le syndrome coronarien aigu (ici en rouge, en haut à gauche). © Kolossváry et al | Radiology, RSNA

Et si l'intelligence artificielle (IA) pouvait faciliter le tri des patients admis aux urgences pour douleur thoracique aiguë ? C'est ce que laissent entrevoir des résultats publiés le 17 janvier dans Radiology [1] par des radiologues du Massachusetts General Hospital (MGH) de Boston (États-Unis). Leur modèle d'apprentissage profond utilisant la radiographie thoracique d'admission aux urgences améliore significativement le résultat composite suivi par les chercheurs sur des cohortes rétrospectives de patients, à savoir le nombre de patients ayant subi une embolie pulmonaire, une dissection aortique, un syndrome coronarien aigu (SCA) ou un décès dans les 30 jours suivant l'admission.

Un entraînement sur une cohorte diverse

Les auteurs ont d'abord entraîné leur modèle d'apprentissage profond sur les radiographies thoraciques d’admission aux urgences de 17 254 patients adultes du MGH, qui ont été pris en charge une première fois aux urgences entre 2005 et 2015 pour cause de douleur thoraciq

Il vous reste 74% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Kolossváry M., Raghu V. K., Nagurney J. T. et coll., « Deep Learning Analysis of Chest Radiographs to Triage Patients with Acute Chest Pain Syndrome », Radiology, 17 janvier 2023. DOI : 10.1148/radiol.221926.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

05 Déc

7:09

La seconde interprétation des examens de médecine nucléaire pédiatrique par des radiopédiatres spécialisés en médecine nucléaire a entraîné des changements susceptibles d'avoir un impact sur la prise en charge clinique dans 17 % des cas (étude).
04 Déc

16:10

Une étude, présentée au RSNA, a révélé que l'obésité abdominale, parfois appelée « ventre à bière », est associée à des modifications de la structure cardiaque en plus du poids, en particulier chez les hommes. Ces résultat mettent également en lumière les mesures que les patients et les médecins peuvent prendre pour identifier les risques potentiels et intervenir plus tôt afin de protéger le cœur.

11:00

La forme du muscle grand fessier change de différentes manières avec l’âge, le mode de vie, l’ostéoporose ou le diabète de type 2, et ces changements diffèrent entre les femmes et les hommes, selon une nouvelle étude présentée lors du RSNA. (Etude)

7:11

Un modèle de deep learning a amélioré la qualité d'image de l'IRM à faible dose de contraste pour l'imagerie de la citerne de l'angle ponto-cérébelleux, permettant la détection des lésions et la caractérisation diagnostique avec 10 à 30 % de la dose standard (étude).
Docteur Imago

GRATUIT
VOIR