Les systèmes d’intelligence artificielle conçus pour analyser les radiographies thoraciques sont déjà nombreux. Pour la plupart, ils se concentrent sur la détection d’anomalies ou de pathologies spécifiques : pneumonies, épanchements pleuraux, etc. Pour Zaid Nabulsi et ses confrères de Google Health, la branche santé du géant de l’informatique, cette approche a le défaut de limiter leur utilité pour un centre ou un service de radiologie qui voudrait une assistance pour « prioriser » les patients et améliorer son flux de travail. Un algorithme conçu pour détecter une pathologie peut en effet passer à côté d’une autre et il est irréaliste d’imaginer agréger des systèmes multiples qui détecteraient chacun une ou plusieurs pathologies séparées, écrivent-ils dans la revue Scientific Reports [1].
Différencier les radios « normales » et « anormales »
Les chercheurs de la firme californienne ont donc opté pour une autre démarche, et développé un algorithme d’apprentissage profond capable de diff
Discussion
Aucun commentaire
Commenter cet article