Recherche

Une IA française combine les données cliniques, biologiques et radiologiques pour prédire la sévérité du COVID-19

Selon une étude pilotée depuis le centre Gustave-Roussy, un algorithme exploitant les examens de scanner et les données cliniques et biologiques permet d’anticiper l’évolution de la maladie chez les patients atteints du COVID et de mieux orienter leur prise en charge.

icon réservé aux abonnésArticle réservé aux abonnés
Le 24/06/20 à 16:00, mise à jour aujourd'hui à 15:14 Lecture 5 min.

Cet outil, estime Nathalie Lassau, pourrait être utile pour orienter les patients si une deuxième vague épidémique survient (photo d'illustration). © Carla Ferrand

Au plus fort de l’épidémie, le COVID-19 a fait peser une pression inédite sur les équipes soignantes, notamment celles des urgences, qui décidaient d’hospitaliser les patients ou de les renvoyer chez eux. Cette situation a souligné la nécessité d’identifier des marqueurs prédictifs de la sévérité de la maladie. Outre l’âge et les comorbidités, reconnus comme des facteurs de risques, le scanner thoracique s’est affirmé comme une potentielle source d’information, l’extension de l’atteinte pulmonaire étant corrélée à la sévérité de la maladie. Plusieurs équipes de chercheurs et développeurs ont exploité cette caractéristique, et développé des outils basés sur l’intelligence artificielle capables de prédire l’évolution de la maladie.

Une étude lancée à Gustave-Roussy

Nathalie Lassau, radiologue au centre de lutte contre le cancer Gustave-Roussy, à Villejuif (94) et chercheuse à l’Inserm, a voulu aller plus loin et évaluer les capacités pronostiques d’un algorithme qui analyserait non seuleme

Il vous reste 85% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Lassau N., Ammary S., Chouzenoux E. et coll., « AI-based multi-modal integration of clinical characteristics, lab tests and chest CTs improves COVID-19 outcome prediction of hospitalized patients », medRxiv, 19 mai 2020. Article en prépublication.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

25 Avr

17:06

L'antiaggrégant plaquettaire tirofiban administré par voie intraveineuse avant thrombectomie augmente significativement la proportion de patients recanalisés au premier passage (65 %, vs 48 % sans tirofiban), selon un essai randomisé chinois ouvert multicentrique en simple aveugle de phase 2 (200 patients inclus) paru dans JAMA Network Open.

11:13

Une étude publiée dans Radiology: Imaging Cancer révèle un soutien prudent à l'utilisation de l'intelligence artificielledans le dépistage du cancer du sein. Réalisée auprès d'une population diversifiée, l'enquête montre que la confiance envers l'IA varie selon les antécédents médicaux personnels et les facteurs sociodémographiques.

7:19

Un nouveau cabinet de radiologie a ouvert ses porte le 14 avril dernier à l’hypercentre de Montpellier. Ce cabinet propose désormais des examens d’IRM et de scanner, annonce Midilibre.fr
24 Avr

16:01

Un scénario de dépistage du cancer du poumon où le radiologue interprète seulement les scanners avec un résultat positif de l'IA peut réduire la charge de travail des praticiens tout en préservant la sensibilité, selon une étude rétrospective (366 sujets) d'AJR évaluant différents scénarios d'implémentation de l'IA dans le dépistage de ce cancer.
Docteur Imago

GRATUIT
VOIR