Sur plus de 320 algorithmes développés pour diagnostiquer la Covid-19 ou anticiper son évolution à partir d’examens de radiographie ou de scanner thoracique, aucun n’est suffisamment robuste et validé pour une utilisation en clinique, conclut une méta-analyse décrite dans la revue Nature machine intelligence [1]. Ses auteurs, un groupe de mathématiciens et de radiologues de l’université de Cambridge, au Royaume-Uni, ont passé au crible la littérature publiée sur le sujet et évalué les risques de biais ainsi que les erreurs méthodologiques les plus fréquentes.
Des études mal décrites
Les recherches sur les bases de publications ont renvoyé 2 150 articles, dont 415 présentent des résumés jugés pertinents pour la problématique intéressant cette méta-analyse. L’analyse des textes entiers a permis de retenir 320 papiers, dont 258 ont été écartés car ils ne décrivaient pas suffisamment les méthodes de développement et de validation employées par leurs auteurs, ce qui compromet la reproductibil
Discussion
Aucun commentaire
Commenter cet article