Intelligence artificielle

La recherche explore les possibilités des algorithmes contre le COVID-19

Dans le monde entier, des équipes de chercheurs tentent de développer des outils d’intelligence artificielle qui pourront aider les radiologues à détecter et évaluer le COVID-19 sur des examens de radiographie ou de scanner.

icon réservé aux abonnésArticle réservé aux abonnés
Le 07/05/20 à 15:00, mise à jour aujourd'hui à 14:14 Lecture 4 min.

Le modèle COVIDNet-CXR Small développé à l'aide du réseau de neurones COVIDNet aurait montré une sensibilité de 87,1 % et une valeur prédictive positive de 96,4 %, affirment ses développeurs. Wang L. et coll.

Les algorithmes seront-ils des alliés de poids contre le coronavirus ? Pour l’heure, seule une poignée de solutions est disponible dans le commerce, mais les chercheurs et les développeurs travaillent avec enthousiasme. « Il y a une ruée vers l’utilisation et l’exploration des possibilités de l’intelligence artificielle et d’autres outils d’analyse pour diagnostiquer, prédire et traiter le COVID-19 », constate l’économiste Wim Naudé dans un article du 1er avril [1].

Détecter la pneumonie sur les radiographies

Aux États-Unis, les médecins de UC San Diego Health, associés à Amazon Web Services, évaluent l’efficacité chez les patients COVID d’un algorithme développé par leurs soins pour détecter la pneumonie sur des radiographies du thorax.  « Environ 75 % des patients COVID-19 positifs hospitalisés développent une pneumonie virale, rappellent-ils dans la revue Journal of Thoracic Imaging [2]. La détection rapide de la pneumonie chez ces patients pourrait permettre une application rapide de

Il vous reste 84% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Naudé W., « Artificial intelligence against COVID-19: an early review », Towards Data Science, Medium, 1er avril 2020. https://towardsdatascience.com/artificial-intelligence-against-covid-19-an-early-review-92a8360edaba. Site consulté le 7 mai 2020.
  2. Hurt B., Kligerman S., Hsiao A., « Deep Learning Localization of Pneumonia 2019 Coronavirus (COVID-19) Outbreak », Journal of Thoracic Imaging, 20 mars 2020, publication anticipée en ligne. DOI : 0.1097/RTI.0000000000000512.
  3. Wang L., Lin Z. Q., Wong A., « A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 », arXiv.org, 2020, publication en ligne.
  4. Dans Bai H. X., Wang R., Xiong Z. et coll., « AI Augmentation of Radiologist Performance in Distinguishing COVID-19 from Pneumonia of Other Etiology on Chest CT », Radiology, 27 avril 2020, publication en ligne. DOI : 10.1148/radiol.2020201491.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

29 Jan

16:21

Alain Luciani, PU-PH au GHU Henri-Mondor (94) a été élu futur président de la Société française de radiologie (SFR) pour le mandat 2027 - 2031 ce 29 janvier, annonce la SFR.

15:25

Une étude publiée dans JACR compare l’utilisation des examens d’imagerie chez des enfants en consultation externe dans les hôpitaux pédiatriques et non pédiatriques à partir de données Medicaid 2019. Elle montre que les hôpitaux non pédiatriques utilisent plus fréquemment les examens exposant aux radiations ionisantes, tels que les radiographies et scanners, tandis que les hôpitaux pédiatriques privilégient davantage l’échographie et l’IRM.  

13:18

Une étude publiée dans Emergency Radiology rapporte un cas d’hémorragie sous-arachnoïdienne avec anévrismes multiples, dans lequel l’imagerie conventionnelle ne permettait pas d’identifier l’anévrisme rompu. L’IRM de la paroi vasculaire a mis en évidence un rehaussement focal de l’anévrisme du sommet basilaire, permettant un traitement endovasculaire ciblé et soulignant l’intérêt de cette technique dans les situations diagnostiques complexes.  

7:17

Une étude prospective compare l’efficacité de l’échographie mammaire automatisée (ABUS) et de l’échographie manuelle (HHUS) en seconde intention pour détecter des lésions identifiées en IRM mammaire. Bien que la HHUS détecte significativement plus de lésions, les deux techniques présentent une sensibilité similaire, l’ABUS ayant une valeur prédictive positive plus élevées. Ces résultats démontrent que les deux méthodes sont complémentaires et ont le potentiel d’augmenter le taux de détection des lésions lorsqu’elles sont utilisées conjointement.    
Docteur Imago

GRATUIT
VOIR