Intelligence artificielle

L’apprentissage profond apporte sa contribution pour déterminer l’âge osseux à l’IRM

Des chercheurs autrichiens ont mis en évidence les performances de l’apprentissage automatique pour évaluer l’âge osseux à partir d’images IRM. Leur méthode aurait atteint des niveaux de précision « sans précédent ».

icon réservé aux abonnésArticle réservé aux abonnés
Le 01/10/19 à 15:00, mise à jour hier à 14:17 Lecture 2 min.

Selon les auteurs, cette approche basée sur l’IRM et l’intelligence artificielle doit permettre de dépasser les principaux obstacles de l’estimation de l’âge : l’exposition aux rayonnement ionisants et la subjectivité du lecteur (photo d'illustration). © Benjamin Bassereau

En France, le Conseil constitutionnel a validé en mars 2019 l’utilisation de la radiologie de la main pour estimer l’âge osseux des jeunes migrants. Pour certains radiologues et radiopédiatres, cette technique de référence pose toutefois des problèmes éthiques, liés notamment à l’exposition aux rayonnements ionisants et à son manque de précision, en particulier pour les adolescents âgés de 16 à 18 ans [1].

Des chercheurs de l’institut d’imagerie médicolégale Ludwig-Boltzmann à Graz (Autriche) se sont intéressés à cette question : dans la revue Medical Image Analysis [2], ils annoncent avoir développé une nouvelle méthode qui couple l’IRM et l’intelligence artificielle.

Des modèles testés sur 328 images IRM

L’équipe menée par l’ingénieur Darko Stern a testé plusieurs méthodes d’apprentissage automatique (forêts aléatoires, réseaux de neurones convolutifs profonds) sur des images d’IRM 3D de la main. Les différents modèles ont été entraînés sur une base de données de 328 images IRM collecté

Il vous reste 63% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Adamsbaum C., Chaumoitre K., Panuel M., « La détermination de l’âge osseux à des fins médico-légales, que faire ? », Journal de radiologie, avril 2008, vol. 89, n° 4, p. 455-466. DOI : JR-04-2008-89-4-0221-0363-101019-200803369.
  2. Stern D., Payer C., Urschler M., « Automated age estimation from MRI volumes of the hand », Mediacl Image Analysis, décembre 2019, vol. 58. DOI : https://doi.org/10.1016/j.media.2019.101538.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

05 Déc

7:09

La seconde interprétation des examens de médecine nucléaire pédiatrique par des radiopédiatres spécialisés en médecine nucléaire a entraîné des changements susceptibles d'avoir un impact sur la prise en charge clinique dans 17 % des cas (étude).
04 Déc

16:10

Une étude, présentée au RSNA, a révélé que l'obésité abdominale, parfois appelée « ventre à bière », est associée à des modifications de la structure cardiaque en plus du poids, en particulier chez les hommes. Ces résultat mettent également en lumière les mesures que les patients et les médecins peuvent prendre pour identifier les risques potentiels et intervenir plus tôt afin de protéger le cœur.

11:00

La forme du muscle grand fessier change de différentes manières avec l’âge, le mode de vie, l’ostéoporose ou le diabète de type 2, et ces changements diffèrent entre les femmes et les hommes, selon une nouvelle étude présentée lors du RSNA. (Etude)

7:11

Un modèle de deep learning a amélioré la qualité d'image de l'IRM à faible dose de contraste pour l'imagerie de la citerne de l'angle ponto-cérébelleux, permettant la détection des lésions et la caractérisation diagnostique avec 10 à 30 % de la dose standard (étude).
Docteur Imago

GRATUIT
VOIR