Intelligence artificielle

L’apprentissage profond apporte sa contribution pour déterminer l’âge osseux à l’IRM

Des chercheurs autrichiens ont mis en évidence les performances de l’apprentissage automatique pour évaluer l’âge osseux à partir d’images IRM. Leur méthode aurait atteint des niveaux de précision « sans précédent ».

icon réservé aux abonnésArticle réservé aux abonnés
Le 01/10/19 à 15:00, mise à jour hier à 14:19 Lecture 2 min.

Selon les auteurs, cette approche basée sur l’IRM et l’intelligence artificielle doit permettre de dépasser les principaux obstacles de l’estimation de l’âge : l’exposition aux rayonnement ionisants et la subjectivité du lecteur (photo d'illustration). © Benjamin Bassereau

En France, le Conseil constitutionnel a validé en mars 2019 l’utilisation de la radiologie de la main pour estimer l’âge osseux des jeunes migrants. Pour certains radiologues et radiopédiatres, cette technique de référence pose toutefois des problèmes éthiques, liés notamment à l’exposition aux rayonnements ionisants et à son manque de précision, en particulier pour les adolescents âgés de 16 à 18 ans [1].

Des chercheurs de l’institut d’imagerie médicolégale Ludwig-Boltzmann à Graz (Autriche) se sont intéressés à cette question : dans la revue Medical Image Analysis [2], ils annoncent avoir développé une nouvelle méthode qui couple l’IRM et l’intelligence artificielle.

Des modèles testés sur 328 images IRM

L’équipe menée par l’ingénieur Darko Stern a testé plusieurs méthodes d’apprentissage automatique (forêts aléatoires, réseaux de neurones convolutifs profonds) sur des images d’IRM 3D de la main. Les différents modèles ont été entraînés sur une base de données de 328 images IRM collecté

Il vous reste 63% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Adamsbaum C., Chaumoitre K., Panuel M., « La détermination de l’âge osseux à des fins médico-légales, que faire ? », Journal de radiologie, avril 2008, vol. 89, n° 4, p. 455-466. DOI : JR-04-2008-89-4-0221-0363-101019-200803369.
  2. Stern D., Payer C., Urschler M., « Automated age estimation from MRI volumes of the hand », Mediacl Image Analysis, décembre 2019, vol. 58. DOI : https://doi.org/10.1016/j.media.2019.101538.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

16 Déc

13:28

Deux modèles vision-langage (GPT-4o et GPT-5) appliqués à des examens d'imagerie thoracique ont montré des précisions diagnostiques de 15,9 % et 24,7 % quand ils se basaient sur les images et les métadonnées des patients, et de 40,1 % et 59,1 % quand ils se basaient sur les métadonnées et les descriptions écrites des images par des radiologues. Étude.

7:26

Une étude présentée dans AJR a comparé les performances de l'IRM 0,55 T, 1,5 T et 3 T dans la surveillance du néoplasme mucineux papillaire intraductal. « La concordance entre radiologues concernant les caractéristiques suspectes des kystes était excellente pour tous les champs et tous les examens à 0,55 T ont été considérés comme diagnostiques. »
15 Déc

16:23

13:20

Dans un article paru le 11 décembre dans le JAMA, une neurologue de l'université de Calgary au Canada appelle ses confrères oncologues à prendre en compte les AVC comme de fréquentes et potentiellement handicapantes complications des cancers et à travailler pour améliorer leur prise en charge.
Docteur Imago

GRATUIT
VOIR