Les systèmes d’intelligence artificielle conçus pour analyser les radiographies thoraciques sont déjà nombreux. Pour la plupart, ils se concentrent sur la détection d’anomalies ou de pathologies spécifiques : pneumonies, épanchements pleuraux, etc. Pour Zaid Nabulsi et ses confrères de Google Health, la branche santé du géant de l’informatique, cette approche a le défaut de limiter leur utilité pour un centre ou un service de radiologie qui voudrait une assistance pour « prioriser » les...

Jérôme HOFF
Bibliographie
  1. Nabulsi Z., Sellergren A., Jamshy S. et coll., « Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19 », Scientific Reports, septembre 2021, vol. 11, n° 15553. DOI : https://doi.org/10.1038/s41598-021-93967-2.