Algorithmes

Une méta-analyse pointe les biais et les failles méthodologiques des modèles d’IA pour la Covid-19

Selon une revue de littérature britannique, les études sur l’utilisation de modèles d’intelligence artificielle pour la détection et le pronostic de la Covid-19 à partir d’examens d’imagerie souffriraient de problèmes liés à la mauvaise qualité des données, à une faible application des méthodes de développement des algorithmes, ainsi que d’une mauvaise reproductibilité et de bais de conception.

icon réservé aux abonnésArticle réservé aux abonnés
Le 27/04/21 à 16:00, mise à jour hier à 14:14 Lecture 3 min.

« Les rapports d’études actuels souffrent d’une prévalence élevée de déficiences au niveau de la méthodologie et du compte rendu », constatent les chercheurs de Cambridge. D. R.

Sur plus de 320 algorithmes développés pour diagnostiquer la Covid-19 ou anticiper son évolution à partir d’examens de radiographie ou de scanner thoracique, aucun n’est suffisamment robuste et validé pour une utilisation en clinique, conclut une méta-analyse décrite dans la revue Nature machine intelligence [1]. Ses auteurs, un groupe de mathématiciens et de radiologues de l’université de Cambridge, au Royaume-Uni, ont passé au crible la littérature publiée sur le sujet et évalué les risques de biais ainsi que les erreurs méthodologiques les plus fréquentes.

Des études mal décrites

Les recherches sur les bases de publications ont renvoyé 2 150 articles, dont 415 présentent des résumés jugés pertinents pour la problématique intéressant cette méta-analyse. L’analyse des textes entiers a permis de retenir 320 papiers, dont 258 ont été écartés car ils ne décrivaient pas suffisamment les méthodes de développement et de validation employées par leurs auteurs, ce qui compromet la reproductibil

Il vous reste 81% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Roberts M., Driggs D., Thorpe M. et coll., « Common pitfalls and recommandations for using machine learning to detect and pronosticate for COVID-19 using chest radigraphs ans CT scans », Nature Machine Intelligence, mars 2021, vol. 3, p. 199 – 217. DOI : https://doi.org/10.1038/s42256-021-00307-0

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

11 Fév

16:09

Median Technologies a obtenu l’autorisation 510(k) de la FDA pour son dispositif médical eyonis® LCS.  Basé sur l’IA. Celui-ci vise à transformer le dépistage du cancer du poumon en aidant à son diagnostic à des stages précoces et curables et ce, en limitant les examens de suivi inutiles et les faux positifs.

13:30

Un rapport conjoint publié en janvier 2026, de la joint commission, organisme de certification aux Etats-Unis et du National Quality Forum (NQF), mentionne le « Préjudice au patient associé à une lésion thermique liée à l'IRM », comme un domaine d’inquiétude important. Les deux organismes américains ont aligné leurs listes des événements Sentinel et « événements graves à signaler », afin de simplifier le signalement des événements de sécurité des patients. (Source)

7:16

L’obésité réduit la performance de la radiographie thoracique pour le diagnostic de pneumonie, avec une concordance et une sensibilité nettement inférieures à celles observées chez les patients non obèses. Dans ce contexte, le scanner thoracique démontre une précision diagnostique supérieure pour la pneumonie, chez les patients obèses. (Étude)
10 Fév

16:00

L'arrêté du 4 février 2026 fixe le contenu et les modalités des appels à candidature pour l'expérimentation du retraitement de certains dispositifs médicaux à usage unique, notamment certains types de cathéters.

14:11

Les modèles de comptes rendus structurés IRM spécifiques à l'endométriose amélioreraient considérablement l'exhaustivité de la documentation par rapport aux modèles généraux et au texte libre (étude).
Docteur Imago

GRATUIT
VOIR