Bonnes pratiques 

L’IA engendre des biais algorithmiques 

L’intelligence artificielle démontre son potentiel à transformer le domaine de la radiologie, cependant une étude américaine révèle que les biais algorithmiques continuent de pénaliser certains groupes de patients, notamment les populations sous-représentées. Les auteurs recommandent des orientations pour garantir des soins plus justes.

icon réservé aux abonnésArticle réservé aux abonnés
Le 08/08/25 à 7:00 Lecture 3 min.

Diagrammes de (A) biais et (B) évaluation de biais (A) Le biais algorithmique, ou biais de l’intelligence artificielle (IA), en radiologie a été démontré pour de multiples cas d’utilisation. (B) L’évaluation du biais de l’IA en radiologie présente plusieurs pièges potentiels liés aux ensembles de données, aux définitions démographiques et aux évaluations statistiques. © Yi PH, Bachina P, Bharti B, et al

Alors que les outils d’IA sont de plus en plus utilisés en radiologie, avec des applications allant du diagnostic automatisé de maladies complexes, au triage des urgences, et à l’extraction automatisée d’informations sur les résultats des patients à partir de rapports en texte libre, une étude américaine publiée dans la revue Radiology [1] constate néanmoins une persistance des iniquités dans le diagnostic et les soins.

L’IA défavorise certains groupes

Selon les chercheurs, les modèles d’IA peuvent présenter des biais qui défavorisent certains groupes de patients, notamment ceux issus de populations historiquement sous-représentées. Pourtant malgré une meilleure prise de conscience de ces iniquités, l’évaluation des biais algorithmiques, ou biais de l’IA, reste difficile, indique l’étude.

Ensembles de données incomplets

Les auteurs américains identifient trois facteurs contribuant à ces biais parmi lesquels des ensembles de données d’imagerie médicale incomplets comportant de manière limit

Il vous reste 79% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Yi PH, Bachina P, Bharti B, et al (2025) Pitfalls and Best Practices in Evaluation of AI Algorithmic Biases in Radiology. Radiology 315:e241674. https://doi.org/10.1148/radiol.241674

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

05 Déc

16:13

14:12

Un système de score basé sur l'IRM pour prédire la spondylodiscite a démontré d'excellentes performances diagnostiques, et serait une méthode précise et standardisée pour la prise de décision clinique (étude).

7:09

La seconde interprétation des examens de médecine nucléaire pédiatrique par des radiopédiatres spécialisés en médecine nucléaire a entraîné des changements susceptibles d'avoir un impact sur la prise en charge clinique dans 17 % des cas (étude).
04 Déc

16:10

Une étude, présentée au RSNA, a révélé que l'obésité abdominale, parfois appelée « ventre à bière », est associée à des modifications de la structure cardiaque en plus du poids, en particulier chez les hommes. Ces résultat mettent également en lumière les mesures que les patients et les médecins peuvent prendre pour identifier les risques potentiels et intervenir plus tôt afin de protéger le cœur.
Docteur Imago

GRATUIT
VOIR