Apprentissage profond

Une IA améliore la détection des fractures par radiographie

D’après les résultats d’une étude parue dans Radiology, un système d’apprentissage profond développé par le français Gleamer a permis d’améliorer de près de 9 % la sensibilité des médecins radiologues et urgentistes pour la détection sur des radiographies de fractures sur tout le squelette appendiculaire.

icon réservé aux abonnésArticle réservé aux abonnés
Le 16/06/21 à 16:00, mise à jour aujourd'hui à 15:09 Lecture 2 min.

Le logiciel met en avant les régions d’intérêt en les entourant d’une boîte et fournit un « score de confiance » concernant la présence d’une fracture dans ces zones. © Duron L. et coll.

L’entreprise française Gleamer a annoncé en mai la parution dans Radiology des résultats d’une étude clinique « de grande envergure » sur l’efficacité de sa solution d’intelligence artificielle BoneView® [1].  Ce logiciel, basé sur l’apprentissage profond « détecte les lésions en radiographie traumatique et les présente au radiologue pour validation finale », indique la société dans un communiqué de presse.

Un test clinique sur 600 patients

Financée et conçue par Gleamer, l’étude a comparé les performances de 6 médecins urgentistes et 6 radiologues avec et sans l’aide de BoneView® sur un échantillon rétrospectif d’examens réalisés sur 600 patients issus de 17 centres français, obtenus après un traumatisme récent, dont certains montraient une ou plusieurs fractures de l’épaule, du bras, de la main, du bassin, de la jambe ou du pied. Le logiciel avait été préalablement entraîné à l’aide de 60 170 radiographies de patients traumatiques.

La première étude du genre

« À notre connaissance, il s’

Il vous reste 71% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Duron L., Ducarouge A., Gillibert A. et coll., « Assessment of an AI aid in detection of adult appendicular skeletal fractures by emergency physicians and radiologists: A multicenter cross-sectional diagnostic study », Radiology, 2021. Epub 4 mai 2021. DOI : 10.1148/radiol.2021203886.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

31 Mar

16:00

22 % des médecins répondants à une enquête du Conseil de l'Ordre considèrent leur prise en charge des patients en situation de handicap comme insuffisante ou peu suffisante en raison du manque de temps, de moyens humains et matériels ou encore le manque de formation ou l'inadaptabilité des locaux. 35 % considèrent que l'accès aux soins des patients en situation de handicap est difficile.

13:00

Un décret publié le 19 mars détermine les modalités d'encadrement de l'activité de remise en bon état d'usage de certaines catégories de dispositifs médicaux à usage individuel. La liste des dispositifs concernés sera définie par arrêté.

7:30

La Haute Autorité de santé (HAS) a publié le 20 mars une mise à jour de son Guide pour l'évaluation des infrastructures de simulation en santé, élaborée avec la Société francophone de simulation en santé. Ce document s'adresse aux structures de simulation et aux plateformes de simulation en santé qui souhaitent s'inscrire dans une démarche d'amélioration continue de la qualité, indique la HAS.
28 Mar

16:37

La SFR met en place l’application mobile SFR-JUISCI permettant aux utilisateurs d’accéder aux récentes recherches en radiologie. L’appli est à télécharger via la lien : https://lnkd.in/eW4i956c
Docteur Imago

GRATUIT
VOIR