Intelligence artificielle

Le modèle « YOLO » efficace pour détecter les lésions anormales sur les mammographies

Une étude a évalué un modèle basé sur le réseau d’apprentissage profond You-Only-Look-Once (YOLO) pour détecter et classifier simultanément les lésions suspectes sur les mammographies lors de leur dépistage actuel. Il a atteint 92 % de précision dans le classement des mammographies normales.

icon réservé aux abonnésArticle réservé aux abonnés
Le 27/07/22 à 7:00, mise à jour aujourd'hui à 14:10 Lecture 3 min.

Exemple de mammographies réalisées à 2,5 années d'intervalle chez la même patiente. À gauche, l'examen antérieur apparaît normal. À droite, l'examen « actuel » révèle la présence d'une masse. © Baccouche A. et coll.

Environ 10 % à 30 % des cas de cancer sont manqués lors de la mammographie de dépistage, selon Asma Baccouche, membre du département de sciences informatiques et d’ingénierie de l’université de Louisville, Kentucky (États-Unis), et ses confrères de l’université du Mississipi (États-Unis) et de Bilbao (Espagne). Ces ratages génèrent « un taux de faux négatifs allant jusqu’à 50 % selon le type de lésions et la densité mammaire », rappellent-ils en introduction d’un article de la revue Computer Methods and Programs in Biomédicine [1].

You only look once

Dans cette publication parue en juin 2022, ils présentent les recherches qu’ils ont menées sur un modèle de fusion de bout en bout (end-to-end) basé sur le réseau d’apprentissage profond You-Only-Look-Once (YOLO) et capable de simultanément détecter et classer les lésions mammaires suspectes sur les mammographies numériques. Ils ont travaillé sur une base de données privée de 413 examens réalisés auprès de 230 patientes, dont chacune avait p

Il vous reste 75% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Baccouche A., Garcia-Zapirain E., et coll., « Early detection and classification of abnormality in prior mammograms using image-to-image translation and YOLO techniques », Computer Methods and Programs in Biomedicine, juin 2022, vol. 221, 106884. DOI : 10.1016/j.cmpb.2022.106884.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

09 Jan

16:11

Une étude publiée dans BMC Urology a évalué la capacité de plusieurs grands modèles de langage à classer des comptes rendus d’IRM de la prostate selon le système PI-RADS v2.1. Le modèle GPT-o1 montre la meilleure concordance avec les radiologues, mais tous les modèles présentent des limites pour les lésions PI-RADS 3.

13:08

Chez les patients atteints d'occlusion aiguë des grands vaisseaux (LVO) de l’ACM et de sténose de l’artère intracrânienne sous-jacente traitée par stent de secours, l’administration préalable d’une thrombolyse intraveineuse n’est pas associée à une augmentation du risque d’hémorragie intracrânienne symptomatique ni de la mortalité à 90 jours (étude).

7:30

Un modèle de classification ternaire radiologique a obtenu des performances diagnostiques « excellentes » pour différencier les lésions pulmonaires sur des images de scanner, selon des résultats publiés dans Radiology.
08 Jan

15:17

Des chercheurs ont introduit un nouveau marqueur tumoral IRM appelé « signe sombre-clair-obscur » et suggèrent qu’il peut aider à prédire la métastase des ganglions lymphatiques chez les patients atteints d’un cancer rectal, selon une étude publiée dans Radiology.
Docteur Imago

GRATUIT
VOIR