Cancer du sein

Un algorithme d’intelligence artificielle pourrait prévenir une partie des biopsies mammaires inutiles

Un modèle d’intelligence artificielle entraîné avec des examens de mammographie et des dossiers cliniques associés a pu discerner avec précision les lésions malignes et bénignes du sein chez des patientes aux États-Unis et en Israël. Au sein d’une cohorte de test, il a permis d’éviter 13 % des biopsies non nécessaires, selon ses concepteurs.

icon réservé aux abonnésArticle réservé aux abonnés
Le 10/11/22 à 8:00, mise à jour le 11/09/23 à 13:23 Lecture 3 min.

Un modèle d’intelligence artificielle entraîné avec des examens de mammographie et des dossiers cliniques associés permettrait d’éviter 13 % de biopsies non nécessaires. DR-photo d'illustration

Les modèles d’aide à la détection basés sur l’intelligence artificielle sont de plus utilisés pour repérer les lésions du sein malignes. Toutefois, l’IA est encore loin d’égaler la biopsie dans l’évaluation des sous-types de lésion. Forts de ce constat, des chercheurs de plusieurs laboratoires israéliens et étasuniens ont voulu développer un dispositif capable non seulement d’évaluer le caractère malin d’une lésion du sein mais aussi de classer cette dernière dans des sous-groupes plus fins. Leurs résultats sont parus en octobre 2022 dans Radiology [1].

Deux cohortes en Israël et aux États-Unis

Pour ce faire, ils ont entraîné un modèle qui combinait un réseau de neurones convolutif et des algorithmes d’apprentissage supervisé sur deux cohortes indépendantes de femmes d’Israël et des États-Unis. La première comptait 3 017 femmes et la seconde 2 336. Le dossier de chacune de ces femmes retraçait au moins une année de parcours médical, qui se concluait par la biopsie d’une ou plusieurs lési

Il vous reste 77% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Barros V., Tlusty T., Barkan E. et coll., « Virtual biopsy by using artificial intelligence-based multimodal modeling of binational mammography data », Radiology, octobre 2022. DOI : https://doi.org/10.1148/radiol.220027

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

7:48

Dans un contexte de récidive biochimique du cancer de la prostate, la TEP au PSMA est associée à une meilleure détection de la maladie mais ne serait pas rentable en raison des coûts élevés du traitement et des améliorations modérées d'indicateur QALY (étude).
28 Oct

16:00

Les radiologues universitaires ayant une carrière active en recherche déclarent disposer plus fréquemment des ressources nécessaires pour la recherche (temps, ressources financières, motivation) que les radiologues moins actifs dans ce domaine (étude).

13:47

La quatorzième édition de la Journée mondiale de la radiologie aura lieu le 8 novembre 2025. L'objectif de cette initiative est de mieux faire connaître la valeur ajoutée de la radiologie et d'améliorer la compréhension du grand public sur le rôle essentiel des professionnels de l'imagerie dans le parcours de soins.

7:30

Des chercheurs chinois ont développé un modèle basé sur l'apprentissage profond pour générer des caractéristiques propres à la tomosynthèse à partir d'images de mammographie numérique. Il a permis d'améliorer la précision diagnostique et la caractérisation des lésions, assurent-ils dans European Journal of Radiology.
Docteur Imago

GRATUIT
VOIR