Urgences

L’IA améliore la performance des non-radiologues sur les radiographies thoraciques

icon réservé aux abonnésArticle réservé aux abonnés
Le 08/02/24 à 7:00

Dans le cadre de cette étude, 563 radios thoraciques acquises aux urgences ont été évaluées rétrospectivement à deux reprises par trois radiologues certifiés, trois internes en radiologie et trois non-radiologues et ont été comparées à la performance de l’algorithme (photo d'illustration). © Zackstarr - Radiologist | Wikimedia

Une équipe de chercheurs de l'hôpital universitaire de Munich (Allemagne) a évalué un système d’IA basé sur un réseau de neurones convolutifs, pour la détection des pathologies pulmonaires dans un service d'urgence. Les résultats ont fait l'objet d'une publication dans la revue Chest [1].

L’IA formée sur des données publiques et expertes

Cet algorithme d'IA interprétant les radiographies pulmonaires a été entraîné sur des données publiques provenant de plusieurs hôpitaux comportant des consolidations suspectes de pneumonie, des pneumothorax, des nodules et des épanchements pleuraux. Ces pathologies qui nécessitent un traitement immédiat pour déterminer si la maladie est aiguë nécessitent un haut niveau d'expertise pour une évaluation précise. Une tâche qui n'est pas toujours simple pour les non-radiologues des urgences, parfois tenus de prendre seuls des décisions cliniques basées sur les résultats d'imagerie.

563 radios thoraciques évaluées

Dans le cadre de cette étude de validati

Il vous reste 58% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Rudolph J., Huemmer C., Preuhs A. et al., « Non-radiology Healthcare Professionals Significantly Benefit from AI-Assistance in Emergency-Related Chest Radiography Interpretation », Chest, 29 janvier 2024 (pre-proof). DOI : 10.1016/j.chest.2024.01.039.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

31 Oct

16:50

Les députés réunis en commission des Affaires sociales ce mercredi ont voté des mesures s’attaquant aux dépassements d’honoraires des médecins dans le cadre du projet de budget de la sécurité sociale pour 2026.

13:43

Des différences en termes d’innocuité et d’efficacité ont été observées après la cryoablation percutanée et l’ablation par micro-ondes (MWA) du cancer du poumon non à petites cellules (CPNPC) dans et à proximité du poumon précédemment irradié, bien que la certitude statistique soit limitée par la taille de l’échantillon, indique une étude. 

7:45

Une note technique parue dans European Radiology Experimental illustre l’utilisation intégrale du scanner à comptage photonique (PCD-CT) spectral à ultra haute résolution dans le cas d’une blessure au genou. Cette modalité permet, selon les auteurs, une évaluation complète des fractures, des œdèmes et des tissus mous et peut améliorer la prise de décision clinique précoce en cas de traumatisme du genou.
30 Oct

15:51

Recevoir des résultats de radiologie par le biais du dossier médical informatisé peut entraîner de la confusion et de la détresse chez les patients, indique une étude publiée dans Current Problems in Diagnostic Radiology. Parmi les suggestions visant à améliorer la situation et la compréhension figurent l’ajout d’un résumé vulgarisé et la définition de systèmes de notation.
Docteur Imago

GRATUIT
VOIR