Maladies neurodégénératives

Intelligence artificielle et imagerie font la paire pour prédire la maladie d’Alzheimer

Grâce à l’intelligence artificielle, des chercheurs espèrent percer l’énigme des mécanismes de la maladie d’Alzheimer. Au Canada et aux États-Unis, des travaux sont en cours avec l’IRM et la TEP. Ils permettraient d'anticiper l'apparition de la maladie plusieurs années avant le diagnostic final.

icon réservé aux abonnésArticle réservé aux abonnés
Le 07/02/19 à 16:00, mise à jour hier à 15:18 Lecture 2 min.

Des chercheurs canadiens ont conçu un algorithme d’IA qui permettrait de détecter les signes de déclin cognitif en s'appuyant sur l’IRM cérébrale. CC BY 2.5 https://en.wikipedia.org/w/index.php?curid=7416886

Dans leur combat contre la maladie d'Alzheimer, les chercheurs prennent de l'avance. Au Canada, des scientifiques de l’université de Toronto et de l’université McGill, à Montréal, ont conçu un algorithme d’intelligence artificielle qui permettrait de détecter les signes de déclin cognitif grâce à l’IRM cérébrale, à la génétique et aux données cliniques. Il pourrait ainsi aider à prédire l’apparition de la maladie d'Alzheimer dans les cinq ans. Ces travaux ont fait l’objet d’une publication dans la revue PLOS Computational Biology [1] en septembre dernier.

Une cohorte de 800 patients

L’équipe, menée par Mallar Chakravarty, chercheur au sein du département d’ingénierie biomédicale de l’université McGill, a entraîné son algorithme à l’aide de données issues de l'étude Alzheimer’s Disease Neuroimaging Initiative. La cohorte composée de plus de 800 personnes âgées comprenait des sujets en bonne santé, d’autres présentant des troubles cognitifs légers ou atteints de la maladie d'Alzheimer.

Reta

Il vous reste 71% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Bhagwat N., Viviano J. D., Aristotle N. et coll., « Modeling and prediction of clinical symptom trajectories in Alzheimer’s disease using longitudinal data », PLOS Computational Biology, 14 septembre 2018. DOI : 10.1371/journal.pcbi.1006376.
  2. Ding Y., Sohn J. H., Kawczynski M. G., et coll., « A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the brain », Radiology, 6 novembre 2018, vol. 290, n° 2. DOI : 10.1148/radiol.2018180958.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

24 Juil

13:00

La FDA (Food and Drug Administration) a accordé une autorisation à Siemens Healthineers pour ses systèmes de radiographie/fluoroscopie Luminos Q.namix R et Luminos Q.namix T. Ces derniers peuvent améliorer l'efficacité et réduire l'exposition aux rayonnements pour les examens spécialisés et complexes.

7:00

L’échographie réalisée aux urgences est plus précise que la radiographie thoracique pour identifier les pneumothorax significatifs en cas de patients souffrants de traumatismes graves, rapporte une étude rétrospective américaine, publiée dans The Journal of Emergency Medicine.

23 Juil

16:51

Le congrès de la Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2025 se tiendra du 13 au 17 Septembre 2025 à l’International Convention Centre de Barcelone. Les inscriptions sont accessibles ici.

7:19

Des séquences 3D isovolumétriques pondérées en T1 et en T2 du cerveau et du corps, sont au minimum recommandées en IRM post-mortem, suite à une enquête menée entre juillet à novembre 2024, par le groupe de travail post-mortem de la Société européenne de radiologie pédiatrique.
Docteur Imago

GRATUIT
VOIR