Médecine prédictive

L’IA analyse des images IRM pour présager des résultats de la radiothérapie

Une étude canadienne démontre la faisabilité d'une prédiction précoce des résultats d’une radiothérapie des métastases cérébrales grâce à l’intelligence artificielle et aux caractéristiques extraites d’images IRM.

icon réservé aux abonnésArticle réservé aux abonnés
Le 05/01/23 à 8:00, mise à jour le 11/09/23 à 13:23 Lecture 2min.

La réponse à la radiothérapie était classée soit « contrôle local » (« LC » tumeur stable ou en diminution, réponse partielle ou réponse complète au traitement), soit « échec local « (« LF » tumeur en expansion associée à une maladie progressive) sur la base des changements de taille de la tumeur lors du suivi par imagerie. Seyed Ali Jalalifar et coll. 2022 - Creative Commons CC BY 4.0

Au Canada, des chercheurs de l’université York, à Toronto, ont développé des modèles d’apprentissage profond pour prédire les résultats d’une radiothérapie chez des patients atteints de métastases cérébrales en se basant sur des images IRM. Leurs travaux font l’objet d’un article paru dans la revue IEEE Journal of Translational Engineering in Health and Medicine en novembre 2022 [1].

124 patients et 156 lésions

Les auteurs ont utilisé les données de 124 patients atteints de métastases cérébrales, traités par radiothérapie stéréotaxique hypofractionnée. « Dans cette étude, l'IRM baseline de planification du traitement, y compris les images pondérées en T1 et T2 FLAIR, a été appliquée pour les résultats du traitement », précisent-ils. Les patients (âge moyen : 62 ± 15 ans ; 40 % d'hommes et 60 % de femmes) étaient porteurs de tumeurs de 2 ± 1,03 cm en moyenne. « L'ensemble de données (124 patients avec 156 lésions) a été divisé de manière aléatoire en un ensemble d'entraînement (99 patient

Il vous reste 74% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

OFFRE DÉCOUVERTE

11€

pendant 1 mois
puis 23 €/mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Bibliographie

  1. Jalalifar S. A., Soliman H., Sahgal A. et coll., « A self-attention-guided 3D deep residual network with big transfer to predict local failure in brain metastasis after radiotherapy using multi-channel MRI », Journal of Translational Engineering in Health and Medicine, novembre 2022, vol. 11, p. 13-22. DOI : 10.1109/JTEHM.2022.3219625

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

16 Avr

7:33

Un arrêté du 4 avril fixe à 7 en imagerie médicale et 2 en médecine nucléaire « le nombre de médecins en exercice susceptibles d'accéder au troisième cycle des études de médecine pour suivre un diplôme d'études spécialisées, une option ou une formation spécialisée transversale, par spécialité et par subdivision. »
15 Avr

14:40

Les algorithmes d’apprentissage profond pour la segmentation par IRM de la prostate ont démontré une précision comparable à celle des radiologues experts malgré des paramètres variables, de sorte que les recherches futures devraient s’orienter vers l’évaluation de la robustesse de la segmentation et des résultats pour les patients dans divers contextes cliniques, selon une revue systématique publiée dans Radiology: Artificial Intelligence.

11:34

Le score calcique de l'artère coronaire obtenu par reconstruction basée sur l'apprentissage profond serait sous-estimé par rapport à l'image standard (étude).

7:52

L’Académie nationale de médecine a identifié les freins au développement de la recherche clinique en France tels que les lourdeurs administratives, les difficultés à obtenir des financements académiques ou encore les difficultés d’adaptation rapide aux nouvelles technologies de santé. Elle a émis 5 recommandations : limiter les délais règlementaires ou encore restructurer l’organisation des CHU autour de pôles hospitalo-universitaires intégrant des services de soins, des laboratoires et des équipes de recherche.
Docteur Imago

GRATUIT
VOIR