Dépistage du cancer du sein

Une étude conclut aux effets positifs de l’IA dans les programmes de dépistage

Une étude publiée dans The Lancet Digital Health a évalué sept stratégies d’intégration de l’intelligence artificielle dans les programmes de dépistage du cancer du sein. Les résultats démontrent le potentiel de l’IA pour améliorer la détection des cancers, réduire la charge de travail des radiologues et optimiser les paramètres du dépistage.

icon réservé aux abonnésArticle réservé aux abonnés
Le 27/01/25 à 15:00 Lecture 2 min.

Les résultats montrent des performances prometteuses pour certaines stratégies, notamment en termes de détection des cancers et de réduction de la charge de travail des radiologues (photo d'illustration). D. R.

Les programmes de dépistage du cancer du sein par mammographie font face à de nombreux défis, notamment une charge de travail élevée en lecture, une grande variabilité entre lecteurs, ou encore des taux élevés de cancers manqués. L’intelligence artificielle se présente comme une solution, selon les auteurs d’une étude présentée dans The Lancet Digital Health [1]. « L’IA pourrait avoir un impact sur les programmes de dépistage grâce à la détection plus précoce de certains cancers d’intervalle », écrivent-ils notamment.

Analyser sept stratégies d’intégration de l’IA

Pourtant, observent-ils, le potentiel des différentes stratégies d’intégration de la technologie reste sous-étudié. Ils ont donc comparé les indicateurs de performance de sept d’entre elles, dans le cadre d’une analyse rétrospective menée sur des données des programmes de dépistage en Allemagne (1 657 068 examens), au Royaume-Uni (223 603 examens) et en Suède (22 779 examens). Le modèle d’IA utilisé, Vara® version 2.10, a é

Il vous reste 74% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Fisches ZV, Ball M, Mukama T, et al (2024) Strategies for integrating artificial intelligence into mammography screening programmes: a retrospective simulation analysis. The Lancet Digital Health 6:e803–e814. https://doi.org/10.1016/S2589-7500(24)00173-0

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

21 Nov

15:34

Des chercheurs ont examiné l’association entre la charge allostatique (AL), un indicateur de dysrégulation physiologique liée au stress, et la présence de pathologie maligne lors de biopsies mammaires guidées par imagerie. Les résultats suggèrent qu’une AL plus élevée est liée à un risque accru de pathologie maligne, ce qui pourrait guider des stratégies de dépistage personnalisées, indique une étude publiée dans JACR.

13:17

L’IRM rapide avec la reconstruction par apprentissage profond (DLR) améliore la qualité d’image et la précision diagnostique pour l’appendicite complexe par rapport à l’IRM non DLR et à la tomographie par contraste, offrant une alternative précieuse pour les patients sensibles aux radiations. (Étude).

7:09

Une étude évaluant plusieurs grands modèles de langage a montré que le modèle OpenAI o3 obtenait la meilleure précision à l’examen national japonais des techniciens en radiologie, atteignant 90 % de réussite.
20 Nov

15:06

Une étude montre que l’angioscanner coronaire à détecteur photonique, réalisée avec des doses réduites de rayonnement et de produit de contraste, offre une excellente qualité d’image et une précision diagnostique élevée, en particulier avec les reconstructions en VMI à 55 keV. Cette technique permet de détecter avec fiabilité les sténoses obstructives et les resténoses intrastent chez des patients souffrant d’une maladie coronarienne associée à l’inflammation.
Docteur Imago

GRATUIT
VOIR