Radiomique

Une publication compare les algorithmes d’apprentissage profond les plus utiles en radiomique

Un article écrit par des radiologues et statisticiens français et paru le 28 août 2023 dans Scientific Reports a cherché à identifier les algorithmes d'apprentissage profond les plus efficaces en radiomique, en utilisant différentes bases de données d'imagerie.

icon réservé aux abonnésArticle réservé aux abonnés
Le 21/12/23 à 15:00 Lecture 2 min.

Les auteurs de l'étude ont testé 9 algorithmes de sélection de caractéristiques et 14 algorithmes de classification binaire, soit 126 combinaisons d’algorithmes d'apprentissage profond en radiomique testées et entraînées pour déterminer leur performance, via leur aire sous la courbe ROC (image d'illustration). D. R.

Définissable comme l’exploration de grandes quantités d’images radiologiques par des méthodes algorithmiques afin d’en extraire des caractéristiques statistiques cachées aux yeux des radiologues, la radiomique attire particulièrement les vendeurs d'IA et les radiologues, au vu des rapides progrès de l'intelligence artificielle. Toutefois, la recherche dans ce domaine n'est pas encore stabilisée et la radiomique n'a pas encore atteint la clinique, en partie par manque d'une méthodologie standardisée.

126 combinaisons d'algorithmes testées

Afin de pallier le manque de recommandations concernant les algorithmes d’apprentissage profond à utiliser en radiomique, des radiologues et statisticiens français ont testé 9 algorithmes de sélection de caractéristiques et 14 algorithmes de classification binaire, soit 126 combinaisons d’algorithmes d'apprentissage profond de radiomique. Chacun de ces algorithmes a ensuite été entraîné, puis testé trois fois pour déterminer ses performances via l'ai

Il vous reste 67% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Bibliographie

  1. Decoux A., Duron L., Habert P. et coll., « Comparative performances of machine learning algorithms in radiomics and impacting factors », Scientific Reports, 28 août 2023. DOI : 10.1038/s41598-023-39738-7.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

17 Jan

16:31

Un arrêté publié dans le Journal officiel du 14 janvier 2025 a inscrit des électrodes aiguilles de radiofréquence COOL-TIP E SERIES® (MEDTRONIC France) sur la liste des produits et prestations remboursables.

12:04

Un protocole abrégé d'IRM (T2 + DWI + HBP) s'est montré prometteur pour la détection du carcinome hépatocellulaire, avec une efficacité diagnostique « relativement élevée », dans le cadre d'une étude présentée dans Academic Radiology.

7:30

Chez les femmes ayant des antécédents personnels de cancer du sein, la surveillance par IRM était associée à une probabilité plus faible de cancer du sein secondaire avancé avant et après l’appariement par score de propension (PSM), conclut une étude parue dans Radiography.
16 Jan

15:53

L'implication des radiologues dans l'évaluation par les pairs du contourage des cibles des traitements de radiothérapie est associée à une augmentation significative du taux de changements cliniquement significatifs de ces cibles, selon une méta-analyse parue dans JAMA Network Open.
Docteur Imago

GRATUIT
VOIR