Radiomique

Une publication compare les algorithmes d’apprentissage profond les plus utiles en radiomique

Un article écrit par des radiologues et statisticiens français et paru le 28 août 2023 dans Scientific Reports a cherché à identifier les algorithmes d'apprentissage profond les plus efficaces en radiomique, en utilisant différentes bases de données d'imagerie.

icon réservé aux abonnésArticle réservé aux abonnés
Le 21/12/23 à 15:00 Lecture 2 min.

Les auteurs de l'étude ont testé 9 algorithmes de sélection de caractéristiques et 14 algorithmes de classification binaire, soit 126 combinaisons d’algorithmes d'apprentissage profond en radiomique testées et entraînées pour déterminer leur performance, via leur aire sous la courbe ROC (image d'illustration). D. R.

Définissable comme l’exploration de grandes quantités d’images radiologiques par des méthodes algorithmiques afin d’en extraire des caractéristiques statistiques cachées aux yeux des radiologues, la radiomique attire particulièrement les vendeurs d'IA et les radiologues, au vu des rapides progrès de l'intelligence artificielle. Toutefois, la recherche dans ce domaine n'est pas encore stabilisée et la radiomique n'a pas encore atteint la clinique, en partie par manque d'une méthodologie standardisée.

126 combinaisons d'algorithmes testées

Afin de pallier le manque de recommandations concernant les algorithmes d’apprentissage profond à utiliser en radiomique, des radiologues et statisticiens français ont testé 9 algorithmes de sélection de caractéristiques et 14 algorithmes de classification binaire, soit 126 combinaisons d’algorithmes d'apprentissage profond de radiomique. Chacun de ces algorithmes a ensuite été entraîné, puis testé trois fois pour déterminer ses performances via l'ai

Il vous reste 67% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Decoux A., Duron L., Habert P. et coll., « Comparative performances of machine learning algorithms in radiomics and impacting factors », Scientific Reports, 28 août 2023. DOI : 10.1038/s41598-023-39738-7.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

21 Nov

15:34

Des chercheurs ont examiné l’association entre la charge allostatique (AL), un indicateur de dysrégulation physiologique liée au stress, et la présence de pathologie maligne lors de biopsies mammaires guidées par imagerie. Les résultats suggèrent qu’une AL plus élevée est liée à un risque accru de pathologie maligne, ce qui pourrait guider des stratégies de dépistage personnalisées, indique une étude publiée dans JACR.

13:17

L’IRM rapide avec la reconstruction par apprentissage profond (DLR) améliore la qualité d’image et la précision diagnostique pour l’appendicite complexe par rapport à l’IRM non DLR et à la tomographie par contraste, offrant une alternative précieuse pour les patients sensibles aux radiations. (Étude).

7:09

Une étude évaluant plusieurs grands modèles de langage a montré que le modèle OpenAI o3 obtenait la meilleure précision à l’examen national japonais des techniciens en radiologie, atteignant 90 % de réussite.
20 Nov

15:06

Une étude montre que l’angioscanner coronaire à détecteur photonique, réalisée avec des doses réduites de rayonnement et de produit de contraste, offre une excellente qualité d’image et une précision diagnostique élevée, en particulier avec les reconstructions en VMI à 55 keV. Cette technique permet de détecter avec fiabilité les sténoses obstructives et les resténoses intrastent chez des patients souffrant d’une maladie coronarienne associée à l’inflammation.
Docteur Imago

GRATUIT
VOIR