Apprentissage profond

Un algorithme prédit la malignité du cancer du sein aussi bien que le radiologue

Une équipe d'IBM a développé un outil qui s'appuie sur les mammographies numériques et le dossier médical des patientes. Objectif : prédire la malignité des biopsies et différencier les dépistages normaux des pathologiques.

icon réservé aux abonnésArticle réservé aux abonnés
Le 26/08/19 à 7:00, mise à jour hier à 14:17 Lecture 1 min.

L'algorithme s’est basé sur un ensemble de données comprenant les images mammographiques et les dossiers de santé électroniques (photo d'illustration). © Carla Ferrand

Encore un exemple du potentiel de l’intelligence artificielle dans le domaine de l’aide au diagnostic. Une équipe du centre de recherche d’IBM, à Haifa, associée à plusieurs laboratoires et établissements de santé israéliens, a développé un modèle qui permettrait de prédire l’évolution à un an du cancer du sein malin, avec une précision comparable à celle des radiologues. Les résultats de ses travaux sont parus en juin 2019 dans Radiology [1]

52 936 images recueillies

Cette étude rétrospective a inclus 52 936 images recueillies chez 13 234 femmes ayant passé au moins une mammographie entre 2013 et 2017, et qui avaient un dossier médical depuis au moins un an avant cet examen. L'algorithme a été formé pour prédire la malignité de la biopsie et différencier les examens de dépistage normaux des examens anormaux. Il s’est basé sur un ensemble de données comprenant les images mammographiques et les dossiers de santé électroniques.

Une sensibilité de 87 % pour la malignité

L'algorithme a été val

Il vous reste 55% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Avatar photo

Benjamin Bassereau

Directeur de la rédaction BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Akselrod-Ballin A., Chorev M. et coll., « Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms », Radiology, publié en ligne le 18 juin 2019. DOI : 10.1148/radiol.2019182622

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

28 Nov

7:16

Une étude suggère l'élaboration de lignes directrices spécifiques au service de radiologie dans le but de garantir la mise en œuvre efficace des soins en tenant compte des traumatismes liés à l'accident du patient.
27 Nov

15:13

Chez les patients atteints de calcification coronarienne sévère, l’angiographie coronarienne ultra-haute résolution avec détecteur de photons a montré une sensibilité et une spécificité élevées pour détecter les sténoses dans des vaisseaux fortement calcifiés, réduisant potentiellement l’angiographie coronarienne invasive. (Étude)

13:10

Des chercheurs en Corée du Sud ont développé un modèle d’IA capable de détecter les méningiomes sur des radiographies du crâne. Validée sur des données internes et externes, la méthode démontre une performance élevée et constitue une alternative prometteuse pour les environnements disposant de ressources limitées. (Étude)

7:10

L’intelligence artificielle (IA) est de plus en plus intégrée dans la recherche et la pratique en radiographie. Selon une étude parue dans Radiography, GenAI et les LLM offrent des opportunités transformatrices pour la recherche en radiographie à travers plusieurs étapes, de la conception de l’étude à la diffusion. Leur intégration exige toutefois une validation rigoureuse et des garanties éthiques pour limiter les biais, les erreurs et les risques liés à la confidentialité.
Docteur Imago

GRATUIT
VOIR