Apprentissage profond

Un algorithme prédit la malignité du cancer du sein aussi bien que le radiologue

Une équipe d'IBM a développé un outil qui s'appuie sur les mammographies numériques et le dossier médical des patientes. Objectif : prédire la malignité des biopsies et différencier les dépistages normaux des pathologiques.

icon réservé aux abonnésArticle réservé aux abonnés
Le 26/08/19 à 7:00, mise à jour hier à 14:19 Lecture 1 min.

L'algorithme s’est basé sur un ensemble de données comprenant les images mammographiques et les dossiers de santé électroniques (photo d'illustration). © Carla Ferrand

Encore un exemple du potentiel de l’intelligence artificielle dans le domaine de l’aide au diagnostic. Une équipe du centre de recherche d’IBM, à Haifa, associée à plusieurs laboratoires et établissements de santé israéliens, a développé un modèle qui permettrait de prédire l’évolution à un an du cancer du sein malin, avec une précision comparable à celle des radiologues. Les résultats de ses travaux sont parus en juin 2019 dans Radiology [1]

52 936 images recueillies

Cette étude rétrospective a inclus 52 936 images recueillies chez 13 234 femmes ayant passé au moins une mammographie entre 2013 et 2017, et qui avaient un dossier médical depuis au moins un an avant cet examen. L'algorithme a été formé pour prédire la malignité de la biopsie et différencier les examens de dépistage normaux des examens anormaux. Il s’est basé sur un ensemble de données comprenant les images mammographiques et les dossiers de santé électroniques.

Une sensibilité de 87 % pour la malignité

L'algorithme a été val

Il vous reste 55% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Avatar photo

Benjamin Bassereau

Directeur de la rédaction BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Akselrod-Ballin A., Chorev M. et coll., « Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms », Radiology, publié en ligne le 18 juin 2019. DOI : 10.1148/radiol.2019182622

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

10 Déc

7:30

Une étude a quantifié l'ampleur et l'évolution de l'utilisation des produits de contraste chez les bénéficiaires du programme Medicare aux États-Unis (environ 13,5 milliards de mL administrés entre 2011 et 2024). Elle montre également qu'une catégorie d'examens d'imagerie représente la majeure partie de ce volume.
09 Déc

16:00

L'entreprise Agfa annonce la suppression de 145 postes en Belgique, due à l'accélération du déclin du film radiologique sur le marché mondial (communiqué).

14:00

Une étude passe en revue l'utilité des algorithmes basés sur l'IA et l'apprentissage automatique pour faciliter efficacement le triage et rationaliser le flux de travail en radiologie pédiatrique.

7:23

L'arrêté du 5 décembre 2025 fixe à 295 le nombre maximum d'autorisations d'exercice des personnes titulaires d'un diplôme permettant l'exercice, dans le pays d'obtention de ce diplôme, de la profession de médecin, pour la période du 15 décembre 2025 au 15 décembre 2026. Pour la radiologie, le nombre d'autorisations est fixé à 3. Ces personnes doivent avoir satisfait à des épreuves de vérification des connaissances, précise l'arrêté.
Docteur Imago

GRATUIT
VOIR