Apprentissage profond

Un algorithme prédit la malignité du cancer du sein aussi bien que le radiologue

Une équipe d'IBM a développé un outil qui s'appuie sur les mammographies numériques et le dossier médical des patientes. Objectif : prédire la malignité des biopsies et différencier les dépistages normaux des pathologiques.

icon réservé aux abonnésArticle réservé aux abonnés
Le 26/08/19 à 7:00, mise à jour aujourd'hui à 14:17 Lecture 1 min.

L'algorithme s’est basé sur un ensemble de données comprenant les images mammographiques et les dossiers de santé électroniques (photo d'illustration). © Carla Ferrand

Encore un exemple du potentiel de l’intelligence artificielle dans le domaine de l’aide au diagnostic. Une équipe du centre de recherche d’IBM, à Haifa, associée à plusieurs laboratoires et établissements de santé israéliens, a développé un modèle qui permettrait de prédire l’évolution à un an du cancer du sein malin, avec une précision comparable à celle des radiologues. Les résultats de ses travaux sont parus en juin 2019 dans Radiology [1]

52 936 images recueillies

Cette étude rétrospective a inclus 52 936 images recueillies chez 13 234 femmes ayant passé au moins une mammographie entre 2013 et 2017, et qui avaient un dossier médical depuis au moins un an avant cet examen. L'algorithme a été formé pour prédire la malignité de la biopsie et différencier les examens de dépistage normaux des examens anormaux. Il s’est basé sur un ensemble de données comprenant les images mammographiques et les dossiers de santé électroniques.

Une sensibilité de 87 % pour la malignité

L'algorithme a été val

Il vous reste 55% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Avatar photo

Benjamin Bassereau

Directeur de la rédaction BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Akselrod-Ballin A., Chorev M. et coll., « Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms », Radiology, publié en ligne le 18 juin 2019. DOI : 10.1148/radiol.2019182622

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

13:14

Une revue systématique de 15 études démontre que la bléomycine électrosclérothérapie ((B)EST) est une technique prometteuse pour traiter les anomalies vasculaires, notamment les malformations veineuses et lymphatiques. « Bien que les résultats suggèrent l’efficacité et l’innocuité, l’hétérogénéité du traitement et les résultats à long terme nécessitent des recherches plus approfondies », suggère l’étude.

7:10

Une étude sur 135 revues de radiologie indexées dans le Journal Citation Reports 2024 révèle que les femmes ne représentent que 20,2 % de l’ensemble des rédacteurs, avec une sous-représentation aux niveaux des rédactrices en chef adjointes et de rédactrices en chef. Ces disparités entre les sexes « soulignent la nécessité de politiques transparentes et de réformes structurelles pour promouvoir une plus grande équité », indiquent les auteurs.
05 Nov

16:40

L'entreprise Pulsenmore a annoncé dans un communiqué que la Food and Drug Administration (FDA) américaine a accordé une autorisation de mise sur le marché d'une plateforme d'échographie prénatale qui permet aux futures mères d'effectuer des examens guidés à domicile interprétés par des médecins à distance.

14:26

Des stratégies de gestion des déchets, de décontamination et de traitements des eaux permettraient de réduire l'impact de la pollution environnementale liée au gadolinium (étude).
Docteur Imago

GRATUIT
VOIR