Aide au diagnostic

Un système d’IA réduirait de moitié le temps de lecture des tomosynthèses mammaires

Une étude américaine met en lumière le potentiel d’une solution d’intelligence artificielle capable de réduire « considérablement » le temps de lecture des tomosynthèses mammaires tout en optimisant la détection des lésions malignes.

icon réservé aux abonnésArticle réservé aux abonnés
Le 17/09/19 à 11:00, mise à jour hier à 14:19 Lecture 3 min.

Des chercheurs américains ont comparé les performances de 24 radiologues sur la lecture de 260 examens de tomosynthèse avec et sans IA (photo d'illustration).. D. R.

Une équipe du département de radiologie de la faculté de médecine de l’université de Pennsylvanie, à Philadelphie (États-Unis) a évalué les capacités d’une solution à base d’intelligence artificielle pour la lecture de tomosynthèses mammaires. Les résultats de ses travaux sont parus le 31 juillet 2019 dans la revue Radiology [1].

Une solution basée sur un réseau de neurones convolutif

Les chercheurs ont comparé les performances de 24 radiologues sur la lecture de 260 examens de tomosynthèse avec et sans IA : « Les 24 radiologues avaient lu plus de 500 examens de tomosynthèse au cours des deux années précédentes, précisent-ils. 13 d’entre eux (54 %) étaient des radiologues spécialisés en sénologie, et 11 étaient des radiologues généralistes. » Le système utilisé dans le cadre de cette étude est le Powerlook Tomo Detection®, une solution d’IA basée sur un réseau de neurones convolutif, commercialisée par la société américaine iCad. La firme a par ailleurs financé l’étude.

260 examens lus av

Il vous reste 79% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Conant E. F., Toledane A. Y., Periaswami S. et coll., « Improving Accuracy and Efficiency with Concurrent Use of Artificial Intelligence for Digital Breast Tomosynthesis », Radiology : Artificial Intelligence, 31 juillet 2019, vol. 1, n° 4. DOI : 10.1148/ryai.2019180096.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

13 Jan

7:14

Une étude rétrospective comparant l’ablation par micro-ondes et la résection chirurgicale chez 172 patients atteints d’hyperparathyroïdie primaire montre des taux de guérison et de rémission à long terme similaires sur cinq ans, sans différence significative de complications.
12 Jan

16:00

Des modèles de langage ajustés avec précision à l'aide d'informations cliniques et radiologiques ont prédit avec exactitude les comptes rendus les plus prioritaires, dans le cadre d'une étude présentée dans European Radiology.

13:17

Une première étude chez l'homme confirme la sécurité et le profil pharmacocinétique favorable de l'imagerie TEP avec le radiotraceur 64Cu-Macrin dans la prise en charge du cancer et de la sarcoïdose.

7:30

Les marqueurs radiomiques hypothalamiques dérivés de l'IRM pondérée T1 et extraits associés à des caractéristiques cliniques offrent une approche d'exploration prometteuse pour prédire l'apnée obstructive du sommeil. Étude.
Docteur Imago

GRATUIT
VOIR