Aide au diagnostic

Un système d’IA réduirait de moitié le temps de lecture des tomosynthèses mammaires

Une étude américaine met en lumière le potentiel d’une solution d’intelligence artificielle capable de réduire « considérablement » le temps de lecture des tomosynthèses mammaires tout en optimisant la détection des lésions malignes.

icon réservé aux abonnésArticle réservé aux abonnés
Le 17/09/19 à 11:00, mise à jour aujourd'hui à 14:21 Lecture 3 min.

Des chercheurs américains ont comparé les performances de 24 radiologues sur la lecture de 260 examens de tomosynthèse avec et sans IA (photo d'illustration).. D. R.

Une équipe du département de radiologie de la faculté de médecine de l’université de Pennsylvanie, à Philadelphie (États-Unis) a évalué les capacités d’une solution à base d’intelligence artificielle pour la lecture de tomosynthèses mammaires. Les résultats de ses travaux sont parus le 31 juillet 2019 dans la revue Radiology [1].

Une solution basée sur un réseau de neurones convolutif

Les chercheurs ont comparé les performances de 24 radiologues sur la lecture de 260 examens de tomosynthèse avec et sans IA : « Les 24 radiologues avaient lu plus de 500 examens de tomosynthèse au cours des deux années précédentes, précisent-ils. 13 d’entre eux (54 %) étaient des radiologues spécialisés en sénologie, et 11 étaient des radiologues généralistes. » Le système utilisé dans le cadre de cette étude est le Powerlook Tomo Detection®, une solution d’IA basée sur un réseau de neurones convolutif, commercialisée par la société américaine iCad. La firme a par ailleurs financé l’étude.

260 examens lus av

Il vous reste 79% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Conant E. F., Toledane A. Y., Periaswami S. et coll., « Improving Accuracy and Efficiency with Concurrent Use of Artificial Intelligence for Digital Breast Tomosynthesis », Radiology : Artificial Intelligence, 31 juillet 2019, vol. 1, n° 4. DOI : 10.1148/ryai.2019180096.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

13:06

Une étude publiée dans Radiology montre que le compte rendu structuré améliore l’efficacité des radiologues en réduisant le temps de rédaction et en recentrant l’attention visuelle sur l’image, par rapport au texte libre. L’ajout de l’intelligence artificielle augmente la précision diagnostique.

7:30

Une étude rétrospective montre que le score Node-RADS basé sur l’IRM offre une excellente précision diagnostique pour la détection des métastases ganglionnaires chez les patients atteints de cancer du rectum, avec une performance supérieure aux critères de taille et aux comptes rendus IRM classiques.
05 Fév

16:36

Le centre hospitalier Agen-Nérac (47) a mis en service le 26 janvier 2026 une nouvelle salle de radiologie numérisée sur son site de Nérac. D’un montant de 185 000 €, cet investissement améliore la qualité des diagnostics tout en réduisant l’exposition aux rayons, informe actu.fr.

15:42

La FDA a autorisé RevealAI-Lung, un outil d’intelligence artificielle développé par RevealDx pour détecter et caractériser les nodules pulmonaires sur les scanners, en fournissant aux radiologues un score de probabilité de malignité.
Docteur Imago

GRATUIT
VOIR