Aide au diagnostic

Un système d’IA réduirait de moitié le temps de lecture des tomosynthèses mammaires

Une étude américaine met en lumière le potentiel d’une solution d’intelligence artificielle capable de réduire « considérablement » le temps de lecture des tomosynthèses mammaires tout en optimisant la détection des lésions malignes.

icon réservé aux abonnésArticle réservé aux abonnés
Le 17/09/19 à 11:00, mise à jour hier à 14:19 Lecture 3 min.

Des chercheurs américains ont comparé les performances de 24 radiologues sur la lecture de 260 examens de tomosynthèse avec et sans IA (photo d'illustration).. D. R.

Une équipe du département de radiologie de la faculté de médecine de l’université de Pennsylvanie, à Philadelphie (États-Unis) a évalué les capacités d’une solution à base d’intelligence artificielle pour la lecture de tomosynthèses mammaires. Les résultats de ses travaux sont parus le 31 juillet 2019 dans la revue Radiology [1].

Une solution basée sur un réseau de neurones convolutif

Les chercheurs ont comparé les performances de 24 radiologues sur la lecture de 260 examens de tomosynthèse avec et sans IA : « Les 24 radiologues avaient lu plus de 500 examens de tomosynthèse au cours des deux années précédentes, précisent-ils. 13 d’entre eux (54 %) étaient des radiologues spécialisés en sénologie, et 11 étaient des radiologues généralistes. » Le système utilisé dans le cadre de cette étude est le Powerlook Tomo Detection®, une solution d’IA basée sur un réseau de neurones convolutif, commercialisée par la société américaine iCad. La firme a par ailleurs financé l’étude.

260 examens lus av

Il vous reste 79% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Conant E. F., Toledane A. Y., Periaswami S. et coll., « Improving Accuracy and Efficiency with Concurrent Use of Artificial Intelligence for Digital Breast Tomosynthesis », Radiology : Artificial Intelligence, 31 juillet 2019, vol. 1, n° 4. DOI : 10.1148/ryai.2019180096.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

29 Jan

7:17

Une étude prospective compare l’efficacité de l’échographie mammaire automatisée (ABUS) et de l’échographie manuelle (HHUS) en seconde intention pour détecter des lésions identifiées en IRM mammaire. Bien que la HHUS détecte significativement plus de lésions, les deux techniques présentent une sensibilité similaire, l’ABUS ayant une valeur prédictive positive plus élevées. Ces résultats démontrent que les deux méthodes sont complémentaires et ont le potentiel d’augmenter le taux de détection des lésions lorsqu’elles sont utilisées conjointement.    
28 Jan

16:19

La journée mondiale de lutte contre le cancer se déroulera le mercredi 4 février 2026. Créée en 2000, cette journée est consacrée à la prévention, la détection, la lutte contre la stigmatisation et le traitement du cancer.

14:12

L’IRM 5 T améliore efficacement l’évaluation chez des patients suspectés de cancer de la prostate par rapport à l'IRM 3 T, indique une étude.

7:44

Une étude canadienne analyse les retombées du recours à la téléradiologie comme solution pour réduire les émissions de gaz à effet de serre dues aux transports des radiologues.
Docteur Imago

GRATUIT
VOIR