IRM musculosquelettique

Une équipe allemande dévoile ses stratégies pour limiter la consommation énergétique

icon réservé aux abonnésArticle réservé aux abonnés
Le 13/11/24 à 15:00, mise à jour le 20/11/24 à 15:42

La reconstruction en apprentissage profond (à droite), par rapport à l'examen musculosquelettique de base (à gauche) permet de gagner du temps et donc de réduire la consommation énergétique. © Afat et al, European Radiology 2024 | CC BY 4.0

Face à l'augmentation des coûts de l'énergie en Europe, et en lien avec l'importance de la consommation des IRM dans la dépense énergétique des services de radiologie (dépense qui représenterait elle-même environ 4 % de la consommation énergétique d'un hôpital moyen), des radiologues de l'hôpital universitaire de Tübingen (Allemagne) ont cherché à optimiser au mieux leur utilisation de l'IRM dans les examens musculosquelettiques. Leurs résultats sont parus le 7 septembre 2024 dans European Radiology [1].

Trois stratégies d'optimisation évaluées

Ils ont évalué, sur deux IRM de 1,5 Teslas de modèles différents et en musculosquelettique, le potentiel de réduction de la consommation énergétique par des protocoles optimisés, par des acquisitions accélérées grâce à la reconstruction d'images par apprentissage profond, et enfin par une optimisation du refroidissement des IRM.

72 % de consommation en moins avec l’apprentissage profond

Leurs résultats montrent d'importantes économies réalis

Il vous reste 51% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Afat S., Wohlers J., Herrmann J. et al, « Reducing energy consumption in musculoskeletal MRI using shorter scan protocols, optimized magnet cooling patterns, and deep learning sequences », European Radiology, 7 septembre 2024. DOI : 10.1007/s00330-024-11056-0.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

28 Nov

7:16

Une étude suggère l'élaboration de lignes directrices spécifiques au service de radiologie dans le but de garantir la mise en œuvre efficace des soins en tenant compte des traumatismes liés à l'accident du patient.
27 Nov

15:13

Chez les patients atteints de calcification coronarienne sévère, l’angiographie coronarienne ultra-haute résolution avec détecteur de photons a montré une sensibilité et une spécificité élevées pour détecter les sténoses dans des vaisseaux fortement calcifiés, réduisant potentiellement l’angiographie coronarienne invasive. (Étude)

13:10

Des chercheurs en Corée du Sud ont développé un modèle d’IA capable de détecter les méningiomes sur des radiographies du crâne. Validée sur des données internes et externes, la méthode démontre une performance élevée et constitue une alternative prometteuse pour les environnements disposant de ressources limitées. (Étude)

7:10

L’intelligence artificielle (IA) est de plus en plus intégrée dans la recherche et la pratique en radiographie. Selon une étude parue dans Radiography, GenAI et les LLM offrent des opportunités transformatrices pour la recherche en radiographie à travers plusieurs étapes, de la conception de l’étude à la diffusion. Leur intégration exige toutefois une validation rigoureuse et des garanties éthiques pour limiter les biais, les erreurs et les risques liés à la confidentialité.
Docteur Imago

GRATUIT
VOIR