Radiographie des fractures

Détection des fractures : quelle place pour l’IA en clinique ?

À l'occasion des Journées francophones de radiologie 2023 (JFR), le vendredi 13 octobre, trois radiologues se sont relayés pour dresser un tableau synthétique des bénéfices, des limites et des implications légales de l'utilisation de l'IA dans la détection des fractures chez l'enfant et chez l'adulte.

icon réservé aux abonnésArticle réservé aux abonnés
Le 03/11/23 à 7:00, mise à jour le 10/11/23 à 12:09 Lecture 4 min.

« L'IA seule a des performances proches du junior, et le junior assisté de l'IA améliore ses performances sur les faux négatifs », selon la radiologue Kathia Chaumoitre. © François Mallordy

« Il y a un afflux croissant de radiographies aux urgences qui entraîne une hausse de la fatigue professionnelle », affirme Catherine Cyteval, PU-PH au CHU de Montpellier, en introduction de son intervention dans la session consacrée aux intelligences artificielles (IA) de détection de fractures aux Journées francophones de radiologie (JFR), le vendredi 13 octobre au palais des Congrès de Paris. « L'IA pourrait aider les internes, les juniors et les urgentistes en première ligne en améliorant la vitesse de lecture, le tri des urgences, ou encore la qualité des lectures. »

Plus de 5 secondes gagnées par radio

Sur la vitesse de lecture d'abord, les publications récentes sont encourageantes : « Un radiologue assisté de l’IA pour détecter les fractures gagne plus de 5 secondes sur chaque radio, selon une étude parue en 2021 utilisant le logiciel de Gleamer qui a progressé depuis », énonce Catherine Cyteval [1]. Toutefois, sur le tri des urgences, la littérature est encore avare en donnée

Il vous reste 82% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Guermazi A.,Tannoury C., Kompel A.J., et coll., « Improving Radiographic Fracture Recognition Performance and Efficiency Using Artificial Intelligence », Radiology, 21 décembre 2021. DOI : 10.1148/radiol.210937
  2. Anthony Jaillat, « Évaluation rétrospective des performances diagnostiques des radiologues et urgentistes comparées à une intelligence artificielle pour la détection des fractures de l’extrémité supérieure du fémur et du bassin en radiographie standard », Médecine humaine et pathologie, 2022. dumas-03818927.
  3. Kuo R. Y. L., Harrison C., Curran T-A., et coll., « Artificial Intelligence in Fracture Detection: A Systematic Review and Meta-Analysis », Radiology, 29 mars 2022. DOI : 10.1148/radiol.211785
  4. Hayashi, D., Kompel, A.J., Ventre, J. et coll., « Automated detection of acute appendicular skeletal fractures in pediatric patients using deep learning ». Skeletal Radiol, 06 mai 2022 DOI : 10.1007/s00256-022-04070-0

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

08 Déc

16:12

Le scanner double-énergie en scanner n’apporte pas de supériorité technique constante par rapport au scanner standard pour la résolution en contraste des métastases hépatiques hypovasculaires, selon une méta-analyse.

11:00

Bayer a présenté au RSNA les premiers résultats pédiatriques de son étude QUANTI, montrant que son agent de contraste IRM gadoquatrane offre un profil pharmacocinétique et une sécurité comparables à ceux de l’adulte, tout en réduisant de 60 % la dose (communiqué).

7:10

Jeffrey S. Klein a été nommé le nouveau président de la Société nord-américaine de radiologie (RSNA).
05 Déc

16:13

14:12

Un système de score basé sur l'IRM pour prédire la spondylodiscite a démontré d'excellentes performances diagnostiques, et serait une méthode précise et standardisée pour la prise de décision clinique (étude).
Docteur Imago

GRATUIT
VOIR