Scanner thoracique

Le deep learning montre ses performances pour la segmentation des lésions pulmonaires multiples

Un système de segmentation de lésions multiples du cancer du poumon basé sur l'apprentissage profond a été mis au point et évalué par une équipe de chercheurs espagnols. Développé à partir de données réelles multicentriques, le système affiche une sensibilité de détection des lésions de 85 %.

icon réservé aux abonnésArticle réservé aux abonnés
Le 14/11/25 à 15:00, mise à jour le 27/11/25 à 17:37 Lecture 2 min.

Les cas issus de l'ensemble de données externes montrent les lésions prédites par la méthode de deep learning (en bleu) et les lésions réelles (en rouge). X. Rafael-Palou et coll. / European Radiology Experimental (2025) / CC BY 4.0

En Espagne, une équipe constituée de chercheurs de l’hôpital universitaire La Fe à Valence et de data scientists de la société d’intelligence artificielle Qibim ont réalisé une étude [1] sur la segmentation des lésions multiples du cancer du poumon. « Une segmentation précise des lésions du cancer du poumon au scanner est essentielle pour un diagnostic précis, une planification thérapeutique personnalisée et une évaluation de la réponse au traitement », rappellent-ils dans leur étude publiée au mois d’août dans la revue European Radiology Experimental. Depuis plusieurs années, des outils automatisés de segmentation des lésions pulmonaires intégrés au flux de travail radiologique ont été développés et étudiés, « mais la capacité à segmenter plusieurs lésions par patient reste sous-explorée », constatent-ils.

1 081 scanners collectés

Dans cette optique de recherche, les scientifiques espagnols ont voulu mettre au point une méthode automatisée basée sur l’apprentissage profond pour la segme

Il vous reste 70% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Rafael-Palou X, Jimenez-Pastor A, Martí-Bonmatí L, et al (2025). Advancing deep learning-based segmentation for multiple lung cancer lesions in real-world multicenter CT scans. Eur Radiol Exp 9:78. https://doi.org/10.1186/s41747-025-00617-7

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

24 Déc

16:00

Une étude publiée dans Radiographics passe en revue les récentes avancées techniques qui ont permis la mise en œuvre clinique de l'IRM 7 T et décrivent ses applications en neuro-imagerie.

13:33

L'entreprise américaine Azurity Pharmaceuticals annonce la validation FDA de son produit de contraste IRM à base de fer Ferabright (ferumoxytol) pour l'imagerie cérébrale.

7:31

Dans l'Écho Républicain, la directrice de l'ARS Centre-Val de Loire détaille les conditions de la suspension d'un radiologue d'Orléans mis en examen pour viol.
23 Déc

16:00

La polyclinique du Cotentin à Cherbourg (50) a mis en service deux nouvelles IRM, annonce Ouest France.
Docteur Imago

GRATUIT
VOIR