Scanner thoracique

Le deep learning montre ses performances pour la segmentation des lésions pulmonaires multiples

Un système de segmentation de lésions multiples du cancer du poumon basé sur l'apprentissage profond a été mis au point et évalué par une équipe de chercheurs espagnols. Développé à partir de données réelles multicentriques, le système affiche une sensibilité de détection des lésions de 85 %.

icon réservé aux abonnésArticle réservé aux abonnés
Le 14/11/25 à 15:00, mise à jour le 27/11/25 à 17:37 Lecture 2 min.

Les cas issus de l'ensemble de données externes montrent les lésions prédites par la méthode de deep learning (en bleu) et les lésions réelles (en rouge). X. Rafael-Palou et coll. / European Radiology Experimental (2025) / CC BY 4.0

En Espagne, une équipe constituée de chercheurs de l’hôpital universitaire La Fe à Valence et de data scientists de la société d’intelligence artificielle Qibim ont réalisé une étude [1] sur la segmentation des lésions multiples du cancer du poumon. « Une segmentation précise des lésions du cancer du poumon au scanner est essentielle pour un diagnostic précis, une planification thérapeutique personnalisée et une évaluation de la réponse au traitement », rappellent-ils dans leur étude publiée au mois d’août dans la revue European Radiology Experimental. Depuis plusieurs années, des outils automatisés de segmentation des lésions pulmonaires intégrés au flux de travail radiologique ont été développés et étudiés, « mais la capacité à segmenter plusieurs lésions par patient reste sous-explorée », constatent-ils.

1 081 scanners collectés

Dans cette optique de recherche, les scientifiques espagnols ont voulu mettre au point une méthode automatisée basée sur l’apprentissage profond pour la segme

Il vous reste 70% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Rafael-Palou X, Jimenez-Pastor A, Martí-Bonmatí L, et al (2025). Advancing deep learning-based segmentation for multiple lung cancer lesions in real-world multicenter CT scans. Eur Radiol Exp 9:78. https://doi.org/10.1186/s41747-025-00617-7

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

06 Fév

16:08

Des chercheurs ont développé et validé un modèle de deep learning entièrement automatisé pour détecter et mesurer les masses surrénaliennes sur des scanners abdominaux injectés. Le modèle a le potentiel d’améliorer les taux de détection des lésions et de faciliter leur prise en charge précoce, indique l'étude.

13:06

Une étude publiée dans Radiology montre que le compte rendu structuré améliore l’efficacité des radiologues en réduisant le temps de rédaction et en recentrant l’attention visuelle sur l’image, par rapport au texte libre. L’ajout de l’intelligence artificielle augmente la précision diagnostique.

7:30

Une étude rétrospective montre que le score Node-RADS basé sur l’IRM offre une excellente précision diagnostique pour la détection des métastases ganglionnaires chez les patients atteints de cancer du rectum, avec une performance supérieure aux critères de taille et aux comptes rendus IRM classiques.
05 Fév

16:36

Le centre hospitalier Agen-Nérac (47) a mis en service le 26 janvier 2026 une nouvelle salle de radiologie numérisée sur son site de Nérac. D’un montant de 185 000 €, cet investissement améliore la qualité des diagnostics tout en réduisant l’exposition aux rayons, informe actu.fr.
Docteur Imago

GRATUIT
VOIR