Dépistage du cancer du sein

L’IA fait aussi bien voire mieux que les radiologues dans le dépistage par mammographie numérique, selon une méta-analyse

Selon une revue systématique, l’intelligence artificielle autonome obtient des résultats similaires ou meilleurs que ceux des radiologues dans l’interprétation des mammographies numériques de dépistage. En revanche, le nombre d’études est insuffisant pour évaluer le rendement des IA pour l’interprétation des examens de tomosynthèse.

icon réservé aux abonnésArticle réservé aux abonnés
Le 07/06/23 à 15:00, mise à jour le 11/09/23 à 13:24 Lecture 3 min.

Une sensibilité plus élevée et une spécificité plus faible ont été observées pour l’IA autonome par rapport aux radiologues, quel que soit le type ou la modalité de l’étude (photo d'illustration) D. R.

Une revue systématique et méta-analyse présentée dans Radiology a fait le point sur les performances de l’intelligence artificielle autonome dans le cadre du dépistage du cancer du sein par mammographie numérique et tomosynthèse mammaire numérique [1]. Objectif : déterminer si ces outils devraient être mis en œuvre cliniquement.

Une anomalie non détectée cause des cancers manqués

Bien que le dépistage par mammographie soit bénéfique, celui-ci ne détecte toutefois pas tous les cancers, rappellent les auteurs de l’étude dans leur article. Le « ratage » d’une anomalie est ainsi signalé comme la cause la plus fréquente de cancers du sein manqués. Un fait qui, selon les chercheurs, appuie la nécessité d'intégrer une aide à l’interprétation « afin de réduire la variabilité entre les observateurs, tout en gérant les limites de la main-d’œuvre ».

La performance indépendante de l’IA doit être suffisamment élevée

Mis en place dans le cadre clinique pour améliorer le flux de travail en imagerie, les

Il vous reste 80% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Yoon J. H., Strand F., Baltzer P. A. T. et coll., « Standalone AI for breast cancer detection at screening digital mammography and digital breast tomosynthesis: a systematic review and meta-analysis », Radiology, epub 23 mai 2023. DOI : https://doi.org/10.1148/radiol.222639.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

09 Déc

14:00

Une étude passe en revue l'utilité des algorithmes basés sur l'IA et l'apprentissage automatique pour faciliter efficacement le triage et rationaliser le flux de travail en radiologie pédiatrique.

7:23

L'arrêté du 5 décembre 2025 fixe à 295 le nombre maximum d'autorisations d'exercice des personnes titulaires d'un diplôme permettant l'exercice, dans le pays d'obtention de ce diplôme, de la profession de médecin, pour la période du 15 décembre 2025 au 15 décembre 2026. Pour la radiologie, le nombre d'autorisations est fixé à 3. Ces personnes doivent avoir satisfait à des épreuves de vérification des connaissances, précise l'arrêté.
08 Déc

16:12

Le scanner double-énergie en scanner n’apporte pas de supériorité technique constante par rapport au scanner standard pour la résolution en contraste des métastases hépatiques hypovasculaires, selon une méta-analyse.

11:00

Bayer a présenté au RSNA les premiers résultats pédiatriques de son étude QUANTI, montrant que son agent de contraste IRM gadoquatrane offre un profil pharmacocinétique et une sécurité comparables à ceux de l’adulte, tout en réduisant de 60 % la dose (communiqué).

7:10

Jeffrey S. Klein a été nommé le nouveau président de la Société nord-américaine de radiologie (RSNA).
Docteur Imago

GRATUIT
VOIR