Dépistage du cancer du sein

L’IA fait aussi bien voire mieux que les radiologues dans le dépistage par mammographie numérique, selon une méta-analyse

Selon une revue systématique, l’intelligence artificielle autonome obtient des résultats similaires ou meilleurs que ceux des radiologues dans l’interprétation des mammographies numériques de dépistage. En revanche, le nombre d’études est insuffisant pour évaluer le rendement des IA pour l’interprétation des examens de tomosynthèse.

icon réservé aux abonnésArticle réservé aux abonnés
Le 07/06/23 à 15:00, mise à jour le 11/09/23 à 13:24 Lecture 3 min.

Une sensibilité plus élevée et une spécificité plus faible ont été observées pour l’IA autonome par rapport aux radiologues, quel que soit le type ou la modalité de l’étude (photo d'illustration) D. R.

Une revue systématique et méta-analyse présentée dans Radiology a fait le point sur les performances de l’intelligence artificielle autonome dans le cadre du dépistage du cancer du sein par mammographie numérique et tomosynthèse mammaire numérique [1]. Objectif : déterminer si ces outils devraient être mis en œuvre cliniquement.

Une anomalie non détectée cause des cancers manqués

Bien que le dépistage par mammographie soit bénéfique, celui-ci ne détecte toutefois pas tous les cancers, rappellent les auteurs de l’étude dans leur article. Le « ratage » d’une anomalie est ainsi signalé comme la cause la plus fréquente de cancers du sein manqués. Un fait qui, selon les chercheurs, appuie la nécessité d'intégrer une aide à l’interprétation « afin de réduire la variabilité entre les observateurs, tout en gérant les limites de la main-d’œuvre ».

La performance indépendante de l’IA doit être suffisamment élevée

Mis en place dans le cadre clinique pour améliorer le flux de travail en imagerie, les

Il vous reste 80% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Yoon J. H., Strand F., Baltzer P. A. T. et coll., « Standalone AI for breast cancer detection at screening digital mammography and digital breast tomosynthesis: a systematic review and meta-analysis », Radiology, epub 23 mai 2023. DOI : https://doi.org/10.1148/radiol.222639.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

16 Jan

15:29

Un tissu mammaire dense réduit la performance de la tomosynthèse mammaire numérique, selon une étude publiée dans Academic Radiology. « Ces résultats soulignent la nécessité de rapporter et de prendre en compte la densité mammaire dans les recommandations de dépistage. »

13:27

Vidi Capital finalise son rapprochement avec le groupe IMAC à Cholet, qui rejoint le réseau. Cette opération porte à 110 le nombre de médecins en exercice, répartis au sein de sept entités et IMAC devient ainsi le deuxième groupe des Pays-de-la-Loire à s’adosser à Vidi Capital, après Vidi – Rad’Yon, annonce un communiqué de presse.

7:13

Bayer a annoncé la conclusion d’accords définitifs pour l’acquisition auprès d’Attralus de deux agents d’imagerie moléculaire expérimentaux, AT-01 et AT-05, destinés au diagnostic de l’amyloïdose cardiaque. Cette opération stratégique renforce la position de Bayer dans l’imagerie moléculaire et s’inscrit dans le développement de sa stratégie de cardiologie de précision, annonce un communiqué.
15 Jan

15:14

Les élections de l’European Society of Radiology (ESR) se tiendront du 8 au 21 janvier 2026. Deux candidates soutenues par la SFR, les professeurs Isabelle Thomassin-Naggara et Corinne Balleyguier, présentent leur candidature. Les radiologues français membres de l’ESR sont appelé à se mobiliser en votant par courriel : voting@polyas.com.

13:13

Bien que les unités mobiles de mammographie puissent améliorer l’accès aux soins pour des populations médicalement défavorisées, une étude pilote publiée dans Academic Radiology, met en lumière des opportunités pour promouvoir un suivi rapide et équitable des mammographies de dépistage anormales grâce à une meilleure navigation des patients, un soutien social et une aide financière.
Docteur Imago

GRATUIT
VOIR