IRM musculosquelettique

Une équipe allemande dévoile ses stratégies pour limiter la consommation énergétique

icon réservé aux abonnésArticle réservé aux abonnés
Le 13/11/24 à 15:00, mise à jour le 20/11/24 à 15:42

La reconstruction en apprentissage profond (à droite), par rapport à l'examen musculosquelettique de base (à gauche) permet de gagner du temps et donc de réduire la consommation énergétique. © Afat et al, European Radiology 2024 | CC BY 4.0

Face à l'augmentation des coûts de l'énergie en Europe, et en lien avec l'importance de la consommation des IRM dans la dépense énergétique des services de radiologie (dépense qui représenterait elle-même environ 4 % de la consommation énergétique d'un hôpital moyen), des radiologues de l'hôpital universitaire de Tübingen (Allemagne) ont cherché à optimiser au mieux leur utilisation de l'IRM dans les examens musculosquelettiques. Leurs résultats sont parus le 7 septembre 2024 dans European Radiology [1].

Trois stratégies d'optimisation évaluées

Ils ont évalué, sur deux IRM de 1,5 Teslas de modèles différents et en musculosquelettique, le potentiel de réduction de la consommation énergétique par des protocoles optimisés, par des acquisitions accélérées grâce à la reconstruction d'images par apprentissage profond, et enfin par une optimisation du refroidissement des IRM.

72 % de consommation en moins avec l’apprentissage profond

Leurs résultats montrent d'importantes économies réalis

Il vous reste 51% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Journaliste rédacteur spécialisé

Voir la fiche de l’auteur

Bibliographie

  1. Afat S., Wohlers J., Herrmann J. et al, « Reducing energy consumption in musculoskeletal MRI using shorter scan protocols, optimized magnet cooling patterns, and deep learning sequences », European Radiology, 7 septembre 2024. DOI : 10.1007/s00330-024-11056-0.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

06 Fév

16:08

Des chercheurs ont développé et validé un modèle de deep learning entièrement automatisé pour détecter et mesurer les masses surrénaliennes sur des scanners abdominaux injectés. Le modèle a le potentiel d’améliorer les taux de détection des lésions et de faciliter leur prise en charge précoce, indique l'étude.

13:06

Une étude publiée dans Radiology montre que le compte rendu structuré améliore l’efficacité des radiologues en réduisant le temps de rédaction et en recentrant l’attention visuelle sur l’image, par rapport au texte libre. L’ajout de l’intelligence artificielle augmente la précision diagnostique.

7:30

Une étude rétrospective montre que le score Node-RADS basé sur l’IRM offre une excellente précision diagnostique pour la détection des métastases ganglionnaires chez les patients atteints de cancer du rectum, avec une performance supérieure aux critères de taille et aux comptes rendus IRM classiques.
05 Fév

16:36

Le centre hospitalier Agen-Nérac (47) a mis en service le 26 janvier 2026 une nouvelle salle de radiologie numérisée sur son site de Nérac. D’un montant de 185 000 €, cet investissement améliore la qualité des diagnostics tout en réduisant l’exposition aux rayons, informe actu.fr.
Docteur Imago

GRATUIT
VOIR