IRM musculosquelettique

Une équipe allemande dévoile ses stratégies pour limiter la consommation énergétique

icon réservé aux abonnésArticle réservé aux abonnés
Le 13/11/24 à 15:00, mise à jour le 20/11/24 à 15:42

La reconstruction en apprentissage profond (à droite), par rapport à l'examen musculosquelettique de base (à gauche) permet de gagner du temps et donc de réduire la consommation énergétique. © Afat et al, European Radiology 2024 | CC BY 4.0

Face à l'augmentation des coûts de l'énergie en Europe, et en lien avec l'importance de la consommation des IRM dans la dépense énergétique des services de radiologie (dépense qui représenterait elle-même environ 4 % de la consommation énergétique d'un hôpital moyen), des radiologues de l'hôpital universitaire de Tübingen (Allemagne) ont cherché à optimiser au mieux leur utilisation de l'IRM dans les examens musculosquelettiques. Leurs résultats sont parus le 7 septembre 2024 dans European Radiology [1].

Trois stratégies d'optimisation évaluées

Ils ont évalué, sur deux IRM de 1,5 Teslas de modèles différents et en musculosquelettique, le potentiel de réduction de la consommation énergétique par des protocoles optimisés, par des acquisitions accélérées grâce à la reconstruction d'images par apprentissage profond, et enfin par une optimisation du refroidissement des IRM.

72 % de consommation en moins avec l’apprentissage profond

Leurs résultats montrent d'importantes économies réalis

Il vous reste 51% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Bibliographie

  1. Afat S., Wohlers J., Herrmann J. et al, « Reducing energy consumption in musculoskeletal MRI using shorter scan protocols, optimized magnet cooling patterns, and deep learning sequences », European Radiology, 7 septembre 2024. DOI : 10.1007/s00330-024-11056-0.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

21 Fév

13:40

Selon une étude publiée dans Radiology, un algorithme d’apprentissage profond disponible dans le commerce peut permettre des examens IRM de l’épaule de bonne qualité en sept minutes.

7:37

Le parlement a adopté définitivement le budget 2025 de la Sécurité sociale ce 17 février. Il prévoit une hausse des dépenses d’Assurance maladie de 3,4 %, pour atteindre un montant de 265 milliards d’euros.
20 Fév

16:01

L’imagerie des paramètres d’atténuation par ultrasons peut être utilisée pour le dépistage clinique afin d’évaluer la prévalence de la MASLD chez les patients en surpoids ou obèses et de suivre de manière dynamique la progression de la maladie, conclut une étude publiée dans Clinical radiology.

13:31

Le modèle de langage appelé Axpert démontre un potentiel de marquage automatique de l’entérocolite nécrosante sur les comptes-rendus de radiographie abdominale infantile. Cette méthode de marquage peut ainsi servir de cadre pour d’autres modalités d’imagerie et maladies chez les enfants, et les maladies rares chez l’adulte, suggère une étude publiée dans JAMIA Open.
Docteur Imago

GRATUIT
VOIR