Recherche

Une nouvelle méthode pour diagnostiquer plus rapidement les lésions de l’ovaire

Une étude rétrospective a évalué la précision du diagnostic par intelligence artificielle des lésions ovariennes repérées par une IRM. Les performances relevées sont proches de celles des radiologues.

icon réservé aux abonnésArticle réservé aux abonnés
Le 03/09/25 à 7:00, mise à jour le 09/09/25 à 12:30 Lecture 1 min.

Le système, entraîné à reconnaître les caractéristiques de tumeurs bénignes et malignes, a obtenu des résultats proches à ceux des radiologues expérimentés (photo d'illustration). © Winfield J. M. et coll. | British Journal of Radiology

L'intelligence artificielle peut-elle aider à classer les lésions ovariennes repérées sur une IRM ? C'est ce qu'a cherché à découvrir un groupe de chercheurs de l'université Johns Hopkins à Baltimore (Maryland, États-Unis), dont les résultats sont parus dans la revue Radiology, le 5 août dernier [1].

Aussi précis que des radiologues

Les chercheurs ont associé un outil d’intelligence artificielle conçu par Meta, le Segment Anything Model (SAM), à un réseau de neurones DenseNet-121. L’algorithme SAM permet de segmenter automatiquement les lésions visibles à l’IRM. Une étape qui peut s'avérer longue quand elle est réalisée par un radiologue. « Nous avons réduit le temps de traitement de chaque lésion de 4 minutes », précisent les auteurs de l'étude. Ces derniers se sont basés sur les données recueillies entre 2008 à 2020 dans trois établissements, deux américains et un taïwanais, ce qui représente 621 lésions au total. Cette segmentation automatique a atteint un indice de précision (dice co

Il vous reste 53% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Marjolaine Margue

Journaliste spécialisée BOM Presse

Voir la fiche de l’auteur

Bibliographie

  1. Hsu W-C, Wang Y, Wu Y-F, et al (2025) MRI-based Ovarian Lesion Classification via a Foundation Segmentation Model and Multimodal Analysis: A Multicenter Study. Radiology 316:e243412. https://doi.org/10.1148/radiol.243412.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

30 Jan

15:08

Le centre hospitalier de Valenciennes a conclu un partenariat avec Siemens Healthineers pour le renouvellement de ses équipements d'imagerie en coupes, informe l'Observateur Valenciennois. Il prévoit notamment l'installation d'un scanner à comptage photonique.

13:15

Dans ses vœux pour 2026, le Conseil national de l'Ordre des médecins annonce le lancement d'un Livre blanc 2027, « destiné à porter la voix des médecins dans le débat démocratique ».

7:12

Avec leurs capacités à détecter le métastases, la TEP-TDM au PSMA et l'IRM corps entier ont le potentiel de modifier la prise en charge des patients avec un cancer de la prostate avancé, mais des essais prospectifs sont nécessaires avant de les recommander en routine clinique, conclut un article dans European Radiology.
29 Jan

16:21

Alain Luciani, PU-PH au GHU Henri-Mondor (94) a été élu futur président de la Société française de radiologie (SFR) pour le mandat 2027 - 2031 ce 29 janvier, annonce la SFR.
Docteur Imago

GRATUIT
VOIR